Step 1: Understanding Power of Lenses
- The power \( P \) of a lens is given by: \[ P = \frac{100}{f} \quad \text{(in diopters, D)} \] where: - \( f \) = Focal length in cm.
Step 2: Calculating the Power of Each Lens
- Converging lens (convex): \[ P_1 = \frac{100}{20} = 5D \] - Diverging lens (concave): \[ P_2 = \frac{100}{-15} = -\frac{100}{15} = -\frac{20}{3}D \]
Step 3: Total Power of the Combination
Since the lenses are in contact, the net power is: \[ P_{\text{net}} = P_1 + P_2 \] \[ P_{\text{net}} = 5 - \frac{20}{3} \] \[ P_{\text{net}} = \frac{15}{3} - \frac{20}{3} = -\frac{5}{3} D \]
Step 4: Conclusion
Thus, the power of the combination is: \[ \boxed{-\frac{5}{3} D} \] which matches option (B).
Match List-I with List-II for the index of refraction for yellow light of sodium (589 nm)
LIST-I (Materials) | LIST-II (Refractive Indices) | ||
---|---|---|---|
A. | Ice | I. | 1.309 |
B. | Rock salt (NaCl) | II. | 1.460 |
C. | CCl₄ | III. | 1.544 |
D. | Diamond | IV. | 2.417 |
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Compton Effect | IV. | Scattering |
B. | Colors in thin film | II. | Interference |
C. | Double Refraction | III. | Polarization |
D. | Bragg's Equation | I. | Diffraction |
Choose the correct answer from the options given below: