Capacitance with a Dielectric Slab
- The capacitance of a parallel plate capacitor in vacuum is:
\[
C_0 = \frac{\epsilon_0 A}{d}
\]
where:
- \( \epsilon_0 \) = Permittivity of free space,
- \( A \) = Plate area,
- \( d \) = Plate separation.
- When a dielectric slab of thickness \( t \) and dielectric constant \( K \) is inserted:
- The remaining air gap in the capacitor is \( (d - t) \).
- The system now behaves as two capacitors in series:
1. Capacitor with dielectric: \( C_1 = \frac{K \epsilon_0 A}{t} \).
2. Capacitor with air gap: \( C_2 = \frac{\epsilon_0 A}{d - t} \).
- The effective capacitance is:
\[
\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}
\]
\[
\frac{1}{C} = \frac{t}{K \epsilon_0 A} + \frac{(d - t)}{\epsilon_0 A}
\]
\[
C = \frac{\epsilon_0 A}{\frac{t}{K} + (d - t)}
\]
Thus, the capacitance of the capacitor with a dielectric slab is:
\[
C = \frac{\epsilon_0 A}{d - t + \frac{t}{K}}
\]