In the word DAUGHTER, there are 3 vowels namely, A, U, and E, and 5 consonants namely, D, G, H, T, and R.
Number of ways of selecting 2 vowels out of 3 vowels = \(^3C_2\)=10
Number of ways of selecting 3 consonants out of 5 consonants = \(^5C_3\)=10
Therefore, number of combinations of 2 vowels and 3 consonants = 3 × 10 = 30
Each of these 30 combinations of 2 vowels and 3 consonants can be arranged among themselves in 5! ways.
Hence, required number of different words = \(30 \times 5!\) = 3600
The number of strictly increasing functions \(f\) from the set \(\{1, 2, 3, 4, 5, 6\}\) to the set \(\{1, 2, 3, ...., 9\}\) such that \(f(i)>i\) for \(1 \le i \le 6\), is equal to:
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
Permutation is the method or the act of arranging members of a set into an order or a sequence.
Combination is the method of forming subsets by selecting data from a larger set in a way that the selection order does not matter.