Question:

How many words, with or without meaning, each of 2 vowels and 3 consonants can be formed from the letters of the word DAUGHTER?

Updated On: Apr 4, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

In the word DAUGHTER, there are 3 vowels namely, A, U, and E, and 5 consonants namely, D, G, H, T, and R.
Number of ways of selecting 2 vowels out of 3 vowels = \(^3C_2\)=10
Number of ways of selecting 3 consonants out of 5 consonants = \(^5C_3\)=10
Therefore, number of combinations of 2 vowels and 3 consonants = 3 × 10 = 30 
Each of these 30 combinations of 2 vowels and 3 consonants can be arranged among themselves in 5! ways.
Hence, required number of different words = \(30 \times 5!\) = 3600

Was this answer helpful?
1
0

Top Questions on permutations and combinations

View More Questions

Concepts Used:

Permutations and Combinations

Permutation:

Permutation is the method or the act of arranging members of a set into an order or a sequence. 

  • In the process of rearranging the numbers, subsets of sets are created to determine all possible arrangement sequences of a single data point. 
  • A permutation is used in many events of daily life. It is used for a list of data where the data order matters.

Combination:

Combination is the method of forming subsets by selecting data from a larger set in a way that the selection order does not matter.

  • Combination refers to the combination of about n things taken k at a time without any repetition.
  • The combination is used for a group of data where the order of data does not matter.