We are given:
\[
\frac{1}{m} + \frac{4}{n} = \frac{1}{12}.
\]
Rewriting:
\[
\frac{1}{m} = \frac{1}{12} - \frac{4}{n} = \frac{n - 48}{12n}.
\]
So:
\[
m = \frac{12n}{n - 48}.
\]
Since \( m \) and \( n \) are positive integers, \( n - 48 \) must divide \( 12n \).
Also, \( n \) is an odd integer less than 60. So possible \( n \) values are odd numbers from 1 to 59.
Check each odd \( n>48 \) (since denominator positive): \( n = 49, 51, 53, 55, 57, 59 \).
- \( n = 49 \): \( m = \frac{12 \times 49}{1} = 588 \) integer.
- \( n = 51 \): \( m = \frac{612}{3} = 204 \) integer.
- \( n = 53 \): \( m = \frac{636}{5} \) not integer.
- \( n = 55 \): \( m = \frac{660}{7} \) not integer.
- \( n = 57 \): \( m = \frac{684}{9} = 76 \) integer.
- \( n = 59 \): \( m = \frac{708}{11} = 64.36\ldots \) not integer.
Thus valid pairs: \((m, n) = (588, 49), (204, 51), (76, 57)\).
Also check \( n<48 \) odd values that make \( m \) positive integer:
For \( n<48 \), \( n - 48<0 \), which makes \( m \) negative — not allowed.
Hence total = \( 3 \) pairs.
Wait — given options show 4 possible answer choices; let's recheck:
If \( n = 59 \) fails, only 3 valid pairs exist. So answer is (5) 3.