How many of the transformations given below would result in aromatic amines?
The correct answer is 3.
Amines are usually formed from amides, imides, halides, nitro compounds, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines, a combination of electron releasing, steric and H-bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. Alkyl amines are found to be stronger bases than ammonia. Amines being basic in nature, react with acids to form salts. Aryldiazonium salts, undergo replacement of the diazonium group with a variety of nucleophiles to produce aryl halides, cyanides, phenols and arenes.
Amines are usually formed from amides, imides, halides, nitro compounds, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines, a combination of electron releasing, steric and H-bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. Alkyl amines are found to be stronger bases than ammonia. Amines being basic in nature, react with acids to form salts. Aryldiazonium salts, undergo replacement of the diazonium group with a variety of nucleophiles to produce aryl halides, cyanides, phenols and arenes.
Arrange the following in increasing order of their basic strength in aqueous solution:
CH$_3$–NH$_2$, (CH$_3$)$_2$NH, (CH$_3$)$_3$N
Amines are usually formed from amides, imides, halides, nitro compounds, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines, a combination of electron releasing, steric and H-bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. Alkyl amines are found to be stronger bases than ammonia. Amines being basic in nature, react with acids to form salts. Aryldiazonium salts, undergo replacement of the diazonium group with a variety of nucleophiles to produce aryl halides, cyanides, phenols and arenes.
There are many chemical properties of amines.
The primary and secondary amines, including several amine derivatives, have a direct impact on their properties due to the presence of hydrogen bonding. The compounds containing phosphorus have a lower boiling point and the compounds containing amines and alcohol have a higher boiling point. The structure of alkanols is immensely similar to that of amine except the presence of the hydroxyl group. In such a case, oxygen has a higher electronegativity than that of nitrogen, so alkanol compounds are more acidic in nature in comparison to the amines.
On account of the ability to form hydrogen bonds, the amines have tendencies of high solubility in water. The amine molecules such as Ethyl, diethyl, triethyl, and Methyl are gaseous in nature. Whereas, higher weight amines have a solid structure and alkyl amines have a liquid structure. There is an ammonia smell to gaseous amines and a fishy smell to liquid amines. The solubility of amines entirely depends upon the number of carbon atoms in the molecule.