To find the number of pairs \((a, b)\) where \(a \leq b\) and \(\frac{1}{a}+\frac{1}{b}=\frac{1}{9}\), let's begin by manipulating the equation:
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{9}\)
Combine the fractions:
\(\frac{a+b}{ab}=\frac{1}{9}\)
Cross-multiply to eliminate the fractions:
\(9(a+b)=ab\)
Rearrange the equation:
\(ab - 9a - 9b = 0\)
To factor it, add 81 to both sides:
\((a-9)(b-9)=81\)
Now, solve for integer pairs \((a-9, b-9)\) that multiply to 81. Consider the factor pairs of 81: \(1\times81\), \(3\times27\), \(9\times9\), \((-1)\times(-81)\), \((-3)\times(-27)\), \((-9)\times(-9)\). Since \(a\) and \(b\) are positive, we only consider positive factors:
Therefore, the valid pairs \((a, b)\) that satisfy the conditions are \((10, 90)\), \((12, 36)\), and \((18, 18)\), totaling to 3 different pairs.
Pair | \(a\) | \(b\) |
---|---|---|
\(1\) | 10 | 90 |
\(2\) | 12 | 36 |
\(3\) | 18 | 18 |
Thus, the correct answer is 3.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: