To calculate bond order, we use the formula:
\[
\text{Bond Order} = \frac{\text{(Number of bonding electrons)} - \text{(Number of anti-bonding electrons)}}{2}
\]
We calculate the bond order for each species based on their molecular orbital (MO) diagram.
1. CN\(^-\):
The molecular orbital configuration for CN\(^-\) (an extra electron) is:
\[
1\sigma_g^2, 1\sigma_u^2, 2\sigma_g^2, 2\sigma_u^2, 1\pi_u^4, 1\pi_g^2
\]
The number of bonding electrons = 8, anti-bonding electrons = 4, so:
\[
\text{Bond Order} = \frac{8 - 4}{2} = 2
\]
2. CO:
The molecular orbital configuration for CO is:
\[
1\sigma_g^2, 1\sigma_u^2, 2\sigma_g^2, 2\sigma_u^2, 1\pi_u^4, 1\pi_g^2
\]
The number of bonding electrons = 10, anti-bonding electrons = 4, so:
\[
\text{Bond Order} = \frac{10 - 4}{2} = 3
\]
3. NO\(^-\):
The molecular orbital configuration for NO\(^-\) (an extra electron) is:
\[
1\sigma_g^2, 1\sigma_u^2, 2\sigma_g^2, 2\sigma_u^2, 1\pi_u^4, 1\pi_g^3
\]
The number of bonding electrons = 9, anti-bonding electrons = 5, so:
\[
\text{Bond Order} = \frac{9 - 5}{2} = 2
\]
4. O\(_2\):
The molecular orbital configuration for O\(_2\) is:
\[
1\sigma_g^2, 1\sigma_u^2, 2\sigma_g^2, 2\sigma_u^2, 1\pi_u^4, 1\pi_g^2
\]
The number of bonding electrons = 10, anti-bonding electrons = 6, so:
\[
\text{Bond Order} = \frac{10 - 6}{2} = 2
\]
5. N\(_2\):
The molecular orbital configuration for N\(_2\) is:
\[
1\sigma_g^2, 1\sigma_u^2, 2\sigma_g^2, 2\sigma_u^2, 1\pi_u^4, 1\pi_g^2
\]
The number of bonding electrons = 10, anti-bonding electrons = 4, so:
\[
\text{Bond Order} = \frac{10 - 4}{2} = 3
\]
Thus, CO and N\(_2\) have the highest bond order of 3.
Therefore, the correct answer is (3) 3.