The discrete-time unit impulse function, \(\delta[n]\), is defined as:
$$ \delta[n] = \begin{cases} 1 & \text{if } n = 0
0 & \text{if } n \neq 0 \end{cases} $$
The discrete-time unit step function, \(u[n]\), is defined as:
$$ u[n] = \begin{cases} 1 & \text{if } n \ge 0
0 & \text{if } n<0 \end{cases} $$
Let's evaluate the expression \(u[n] - u[n-1]\):
- \(u[n-1]\) is the unit step function shifted right by 1 sample
$$ u[n-1] = \begin{cases} 1 & \text{if } n-1 \ge 0 \implies n \ge 1
0 & \text{if } n-1<0 \implies n<1 \end{cases} $$
- Now consider the difference \(u[n] - u[n-1]\):
- For \(n<0\): \(u[n]=0\), \(u[n-1]=0\)
Difference = 0
- For \(n = 0\): \(u[0]=1\), \(u[0-1]=u[-1]=0\)
Difference = 1 - 0 = (1)
- For \(n \ge 1\): \(u[n]=1\), \(u[n-1]=1\)
Difference = 1 - 1 = 0
The difference \(u[n] - u[n-1]\) is 1 only at n=0 and 0 otherwise, which is exactly the definition of \(\delta[n]\)
Therefore, \(\delta[n] = u[n] - u[n-1]\)