Weight of an object on the moon =\(\frac{1}6\) × Weight of an object on the Earth
Also,
Weight = Mass × Acceleration
Acceleration due to gravity, g = 9.8 \(m/s^2\)
Therefore, weight of a 10 kg object on the Earth = 10 × 9.8 = 98 N
And, weight of the same object on the moon =\(\frac{1}6\) ×98 =16.3 N
A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is:
Use these adverbs to fill in the blanks in the sentences below.
awfully sorrowfully completely loftily carefully differently quickly nonchalantly
(i) The report must be read ________ so that performance can be improved.
(ii) At the interview, Sameer answered our questions _________, shrugging his shoulders.
(iii) We all behave _________ when we are tired or hungry.
(iv) The teacher shook her head ________ when Ravi lied to her.
(v) I ________ forgot about it.
(vi) When I complimented Revathi on her success, she just smiled ________ and turned away.
(vii) The President of the Company is ________ busy and will not be able to meet you.
(viii) I finished my work ________ so that I could go out to play