Effect of Time Scaling on Fourier Series.
Given \( y(t) = f(\alpha t) \), the Fourier series of \( f(t) \) is:
\[
f(t) = \sum_{n=-\infty}^{\infty} C_k e^{-jn\omega_0 t}
\]
Applying time scaling:
\[
y(t) = f(\alpha t) = \sum_{n=-\infty}^{\infty} C_k e^{-jn\omega_0 (\alpha t)}
\]
Rewriting:
\[
y(t) = \sum_{n=-\infty}^{\infty} C_k e^{-jn (\alpha \omega_0) t}
\]
Comparing with the standard Fourier series form:
\[
y(t) = \sum_{n=-\infty}^{\infty} d_k e^{-jn\omega_0' t}
\]
We get:
- \( \omega_0' = \alpha \omega_0 \) (frequency scales by \( \alpha \)).
- Fourier coefficients remain the same: \( d_k = C_k \).
Checking the given options:
1. \( C_k = d_k \) (Correct)
2. \( C_k = \alpha d_k \) (Incorrect)
3. Time period transformation:
\[
T' = \frac{T_0}{\alpha}
\]
% Option
(Correct)
4. \( T' = \alpha T_0 \) (Incorrect).
Thus, the correct answers are (A) and (C).