Step 1: Differentiate the given family of curves.
\[
y = -3x - 3 + m e^{2x}
\]
Differentiate with respect to \( x \):
\[
\frac{dy}{dx} = -3 + 2m e^{2x}
\]
Step 2: Eliminate the parameter \( m \).
From the original equation,
\[
m e^{2x} = y + 3x + 3
\]
Substitute into derivative:
\[
\frac{dy}{dx}
=
-3 + 2(y + 3x + 3)
\]
\[
=
-3 + 2y + 6x + 6
\]
\[
=
2y + 6x + 3
\]
Thus, the differential equation of the given family is:
\[
\frac{dy}{dx} = 2y + 6x + 3
\]
Step 3: Form differential equation of orthogonal trajectories.
For orthogonal trajectories:
\[
\left( \frac{dy}{dx} \right)_{O.T.}
=
- \frac{1}{2y + 6x + 3}
\]
Step 4: Solve the equation.
\[
\frac{dy}{dx}
=
-\frac{1}{2y + 6x + 3}
\]
Rearrange:
\[
(2y + 6x + 3) dy = - dx
\]
Let
\[
u = 2y + 6x + 3
\]
Then
\[
\frac{du}{dx} = 2\frac{dy}{dx} + 6
\]
Substitute \( \frac{dy}{dx} = -\frac{1}{u} \):
\[
\frac{du}{dx}
=
2\left(-\frac{1}{u}\right) + 6
\]
\[
=
6 - \frac{2}{u}
\]
This gives:
\[
\frac{du}{dx}
=
\frac{6u - 2}{u}
\]
Separate variables:
\[
\frac{u}{6u - 2} du = dx
\]
Integrate:
\[
\int \frac{u}{6u - 2} du = \int dx
\]
Simplify:
\[
\frac{1}{6}
\int
\left(
1 + \frac{2}{6u - 2}
\right) du
=
x + C
\]
After integration:
\[
\frac{u}{6}
+
\frac{1}{18} \ln |6u - 2|
=
x + C
\]
Substitute back \( u = 2y + 6x + 3 \):
\[
\frac{2y + 6x + 3}{6}
+
\frac{1}{18}
\ln |6(2y + 6x + 3) - 2|
=
x + C
\]
Final Answer:
\[
\boxed{
\frac{2y + 6x + 3}{6}
+
\frac{1}{18}
\ln |12y + 36x + 16|
=
x + C
}
\]