Step 1: Write coordinates of the centroid.
The centroid $G$ of triangle with vertices $O(0,0)$, $A(0,-\sqrt{3}a)$, and $B(-\sqrt{2}b,0)$ is:
\[
G\left(\frac{-\sqrt{2}b}{3},\frac{-\sqrt{3}a}{3}\right)
\]
Step 2: Use the formula for circumradius.
The circumradius $R$ of a triangle with vertices at $(0,0)$, $(x_1,y_1)$, $(x_2,y_2)$ is:
\[
R = \frac{\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}{4\Delta}
\]
Given $R=4$, simplifying using the given coordinates leads to:
\[
a^2 + b^2 = 16
\]
Step 3: Write the locus of the centroid.
\[
x = -\frac{\sqrt{2}b}{3}, \quad y = -\frac{\sqrt{3}a}{3}
\]
\[
\Rightarrow \frac{9x^2}{2} + \frac{9y^2}{3} = a^2 + b^2
\]
Step 4: Substitute the given condition.
\[
\frac{9x^2}{2} + 3y^2 = 16
\]
\[
x^2 + y^2 = \frac{64}{9}
\]
Step 5: Identify the radius of the locus.
\[
\text{Radius} = \sqrt{\frac{64}{9}} = \frac{8}{3}
\]