We are given the following vectors:
\[
\mathbf{a} = i + 3j - k, \quad \mathbf{b} = 3i - j + 2k, \quad \mathbf{c} = i + 2j - 2k
\]
Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{c} \)
The dot product \( \mathbf{a} \cdot \mathbf{c} \) is calculated as follows:
\[
\mathbf{a} \cdot \mathbf{c} = (1)(1) + (3)(2) + (-1)(-2) = 1 + 6 + 2 = 9
\]
Step 2: Calculate the magnitude of \( \mathbf{c} \)
Next, we calculate the magnitude of vector \( \mathbf{c} \):
\[
|\mathbf{c}| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3
\]
Step 3: Use the given equation to find the angle
We are given that:
\[
\frac{\mathbf{a} \cdot \mathbf{c}}{|\mathbf{c}|} = \frac{10}{3}
\]
Substituting the values we calculated:
\[
\frac{9}{3} = 3
\]
Thus, the angle between \( \mathbf{a} \) and \( \mathbf{c} \), \( \theta \), satisfies:
\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{c}}{|\mathbf{a}| |\mathbf{c}|}
\]
Since we know \( \mathbf{a} \cdot \mathbf{c} = 9 \) and \( |\mathbf{c}| = 3 \), we need to find the magnitude of \( \mathbf{a} \):
\[
|\mathbf{a}| = \sqrt{1^2 + 3^2 + (-1)^2} = \sqrt{1 + 9 + 1} = \sqrt{11}
\]
Substituting into the cosine equation:
\[
\cos \theta = \frac{9}{3 \times \sqrt{11}} = \frac{3}{\sqrt{11}}
\]
This yields \( \theta = \cos^{-1} \left( \frac{3}{\sqrt{11}} \right) \). By calculation, we find that the angle is approximately \( 45^\circ \).
Step 4: Calculate the projection of \( \mathbf{a} \) on \( \mathbf{c} \)
The projection of vector \( \mathbf{a} \) onto \( \mathbf{c} \) is given by:
\[
\text{Proj}_{\mathbf{c}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{c}}{|\mathbf{c}|}
\]
From our previous calculations:
\[
\text{Proj}_{\mathbf{c}} \mathbf{a} = \frac{9}{3} = 3
\]
Thus, the projection of \( \mathbf{a} \) onto \( \mathbf{c} \) is \( 3 \).