The standard reduction half-cell reactions are:
\[ \text{AgCl(s) + e}^- \rightarrow \text{Ag(s) + Cl}^-(\text{aq}); \quad E^\Theta = 0.22 \text{ V at 298 K} \] \[ \text{Ag}^+(\text{aq}) + e^- \rightarrow \text{Ag(s)}; \quad E^\Theta = 0.80 \text{ V at 298 K} \]The overall reaction for the dissolution of silver chloride is:
\[ \text{AgCl(s)} \rightarrow \text{Ag}^+(\text{aq}) + \text{Cl}^-(\text{aq}) \]Using the given half-reactions, the overall cell potential \( (E^\Theta_{\text{cell}}) \) can be calculated as:
\[ E^\Theta_{\text{cell}} = E^\Theta_{\text{Ag}^+/\text{Ag}} - E^\Theta_{\text{AgCl}/\text{Ag}} \]Substituting the given values:
\[ E^\Theta_{\text{cell}} = 0.80 \, \text{V} - 0.22 \, \text{V} = 0.58 \, \text{V}. \] Step 2: Calculate the Gibbs free energy \( (\Delta G^\Theta) \).The relation between \( \Delta G^\Theta \) and \( E^\Theta_{\text{cell}} \) is:
\[ \Delta G^\Theta = -n F E^\Theta_{\text{cell}} \]Here, \( n = 1 \) (number of electrons transferred), \( F = 96500 \, \text{C mol}^{-1} \), and \( E^\Theta_{\text{cell}} = 0.58 \, \text{V} \). Substituting the values:
\[ \Delta G^\Theta = -(1)(96500)(0.58) = -55970 \, \text{J mol}^{-1}. \] Step 3: Round the value to the nearest integer.The Gibbs free energy is:
\[ \Delta G^\Theta = -55970 \, \text{J mol}^{-1}. \]