If A is any event associated with sample space and if E1, E2, E3 are mutually exclusive and exhaustive events. Then which of the following are true?
(A) \(P(A) = P(E_1)P(E_1|A) + P(E_2)P(E_2|A) + P(E_3)P(E_3|A)\)
(B) \(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + P(A|E_3)P(E_3)\)
(C) \(P(E_i|A) = \frac{P(A|E_i)P(E_i)}{\sum_{j=1}^{3} P(A|E_j)P(E_j)}, \; i=1,2,3\)
(D) \(P(A|E_i) = \frac{P(E_i|A)P(E_i)}{\sum_{j=1}^{3} P(E_i|A)P(E_j)}, \; i=1,2,3\)
Choose the correct answer from the options given below:
Let A and B be two events such that: \[ P(A) = 0.8, \quad P(B) = 0.5, \quad P(B|A) = 0.4 \]
Match List-I with List-II:
List-I | List-II |
---|---|
(A) \(P(A \cap B)\) | (I) 0.2 |
(B) \(P(A|B)\) | (II) 0.32 |
(C) \(P(A \cup B)\) | (III) 0.64 |
(D) \(P(A')\) | (IV) 0.98 |
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?