\[
P(1) = P(2) = \alpha, P(3) = 0.3, P(4) = P(5) = \beta
\Rightarrow 2\alpha + 0.3 + 2\beta = 1 \Rightarrow \alpha + \beta = 0.35
\]
Mean = \(1\cdot \alpha + 2\cdot \alpha + 3\cdot 0.3 + 4\cdot \beta + 5\cdot \beta = 3\alpha + 0.9 + 9\beta = 4.2\)
Solve this with previous: obtain \(\alpha, \beta\), then compute \(E(X^2)\), hence:
\[
\sigma^2 + \mu^2 = E(X^2)
\Rightarrow \text{Answer} = 20.4
\]