To find \( f_{32}(x) \) for the function \( f(x) = \frac{2x - 3}{3x - 2} \), we need to determine the pattern or periodicity of the function when composed multiple times.
Step 1: Compute \( f_2(x) = f(f(x)) \)
\[
f(f(x)) = f\left( \frac{2x - 3}{3x - 2} \right) = \frac{2\left( \frac{2x - 3}{3x - 2} \right) - 3}{3\left( \frac{2x - 3}{3x - 2} \right) - 2}
\]
Simplify the numerator and denominator:
\[
\text{Numerator} = \frac{4x - 6 - 9x + 6}{3x - 2} = \frac{-5x}{3x - 2}
\]
\[
\text{Denominator} = \frac{6x - 9 - 6x + 4}{3x - 2} = \frac{-5}{3x - 2}
\]
Thus:
\[
f(f(x)) = \frac{ \frac{-5x}{3x - 2} }{ \frac{-5}{3x - 2} } = x
\]
Step 2: Determine the Periodicity
Since \( f_2(x) = x \), the function \( f(x) \) is its own inverse, and composing it twice returns the original input. This implies that:
\[
f_{2k}(x) = x \quad \text{for any integer } k
\]
\[
f_{2k+1}(x) = f(x) \quad \text{for any integer } k
\]
Step 3: Compute \( f_{32}(x) \)
Since 32 is an even number, we can write it as \( 2 \times 16 \). Therefore:
\[
f_{32}(x) = f_{2 \times 16}(x) = x
\]
Final Answer:
\[
\boxed{x}
\]
This corresponds to option (2).