Definitions:
la$(x, y, z) = \min(x+y, y+z)$,
le$(x, y, z) = \max(x-y, y-z)$,
ma$(x, y, z) = \frac{1}{2} [\text{le}(x, y, z) + \text{la}(x, y, z)]$.
Given $x>y>z>0$:
- $x - y>0$ and $y - z>0$, so le$(x, y, z)$ is the larger of these differences.
- la$(x, y, z)$ is the smaller of $(x+y)$ and $(y+z)$ → clearly $y+z<x+y$ so la$(x, y, z) = y+z$.
Since ma is the average of le and la, it must be less than the larger of the two, i.e., less than le. Hence, ma$(x, y, z) <$ le$(x, y, z)$.