Step 1: Understand the operators
\[
x \mathbin{\$} y = x^2 + y^2,\quad x \mathbin{£} y = |x^2 - y^2|
\]
Step 2: Combine the expressions
\[
(x \mathbin{\$} y) + (x \mathbin{£} y) = x^2 + y^2 + |x^2 - y^2|
\]
Step 3: Analyze the cases
\text{If } x^2>y^2,\ \text{then } x^2 + y^2 + (x^2 - y^2) = 2x^2
\text{If } y^2>x^2,\ \text{then } x^2 + y^2 + (y^2 - x^2) = 2y^2
Hence, without knowing whether \( x^2>y^2 \) or vice versa, we cannot determine a unique value.