Question:

Given that: \[ x = a \sin(2t) (1 + \cos(2t)), \quad y = a \cos(2t) (1 - \cos(2t)) \] Find \(\frac{dy}{dx}\).

Show Hint

Remember: When applying the chain rule, we need to differentiate both the numerator and the denominator to find the derivative \( \frac{dy}{dx} \).
Updated On: Apr 23, 2025
  • \( \frac{a \tan(t)}{b} \)
  • \( \frac{a \tan(t)}{b} \)
  • \( \frac{b \tan(t)}{a} \)
  • \( \frac{b}{a \tan(t)} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Use the chain rule for differentiation. We know that: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \] We need to calculate \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \). Step 2: Differentiate \( y = a \cos(2t) (1 - \cos(2t)) \). To differentiate \( y \) with respect to \( t \), we apply the product rule: \[ \frac{dy}{dt} = a \left[ \frac{d}{dt} \left( \cos(2t) \right) (1 - \cos(2t)) + \cos(2t) \frac{d}{dt} \left( (1 - \cos(2t)) \right) \right] \] Now, calculate the derivatives: \[ \frac{d}{dt} \left( \cos(2t) \right) = -2 \sin(2t), \quad \frac{d}{dt} \left( (1 - \cos(2t)) \right) = 2 \sin(2t) \] Substitute into the equation: \[ \frac{dy}{dt} = a \left[ -2 \sin(2t) (1 - \cos(2t)) + \cos(2t) \cdot 2 \sin(2t) \right] \] Simplify: \[ \frac{dy}{dt} = 2a \sin(2t) \left[ \cos(2t) - (1 - \cos(2t)) \right] \] \[ \frac{dy}{dt} = 2a \sin(2t) \left[ 2 \cos(2t) - 1 \right] \] Step 3: Differentiate \( x = a \sin(2t) (1 + \cos(2t)) \). Similarly, we differentiate \( x \) with respect to \( t \) using the product rule: \[ \frac{dx}{dt} = a \left[ \frac{d}{dt} \left( \sin(2t) \right) (1 + \cos(2t)) + \sin(2t) \frac{d}{dt} \left( (1 + \cos(2t)) \right) \right] \] Now, compute the derivatives: \[ \frac{d}{dt} \left( \sin(2t) \right) = 2 \cos(2t), \quad \frac{d}{dt} \left( (1 + \cos(2t)) \right) = -2 \sin(2t) \] Substitute these values: \[ \frac{dx}{dt} = a \left[ 2 \cos(2t) (1 + \cos(2t)) + \sin(2t) (-2 \sin(2t)) \right] \] Simplify: \[ \frac{dx}{dt} = 2a \cos(2t) (1 + \cos(2t)) - 2a \sin^2(2t) \] Step 4: Calculate \( \frac{dy}{dx} \). Now, use the chain rule to calculate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{2a \sin(2t) \left( 2 \cos(2t) - 1 \right)}{2a \cos(2t) \left( 1 + \cos(2t) \right) - 2a \sin^2(2t)} \] Simplify the expression: \[ \frac{dy}{dx} = \frac{\sin(2t) \left( 2 \cos(2t) - 1 \right)}{\cos(2t) \left( 1 + \cos(2t) \right) - \sin^2(2t)} \] Answer: Therefore, the correct answer is option (4): \( \frac{b}{a \tan(t)} \).
Was this answer helpful?
1
0