Step 1: Use the chain rule for differentiation.
We know that:
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}
\]
We need to calculate \( \frac{dy}{dt} \) and \( \frac{dx}{dt} \).
Step 2: Differentiate \( y = a \cos(2t) (1 - \cos(2t)) \).
To differentiate \( y \) with respect to \( t \), we apply the product rule:
\[
\frac{dy}{dt} = a \left[ \frac{d}{dt} \left( \cos(2t) \right) (1 - \cos(2t)) + \cos(2t) \frac{d}{dt} \left( (1 - \cos(2t)) \right) \right]
\]
Now, calculate the derivatives:
\[
\frac{d}{dt} \left( \cos(2t) \right) = -2 \sin(2t), \quad \frac{d}{dt} \left( (1 - \cos(2t)) \right) = 2 \sin(2t)
\]
Substitute into the equation:
\[
\frac{dy}{dt} = a \left[ -2 \sin(2t) (1 - \cos(2t)) + \cos(2t) \cdot 2 \sin(2t) \right]
\]
Simplify:
\[
\frac{dy}{dt} = 2a \sin(2t) \left[ \cos(2t) - (1 - \cos(2t)) \right]
\]
\[
\frac{dy}{dt} = 2a \sin(2t) \left[ 2 \cos(2t) - 1 \right]
\]
Step 3: Differentiate \( x = a \sin(2t) (1 + \cos(2t)) \).
Similarly, we differentiate \( x \) with respect to \( t \) using the product rule:
\[
\frac{dx}{dt} = a \left[ \frac{d}{dt} \left( \sin(2t) \right) (1 + \cos(2t)) + \sin(2t) \frac{d}{dt} \left( (1 + \cos(2t)) \right) \right]
\]
Now, compute the derivatives:
\[
\frac{d}{dt} \left( \sin(2t) \right) = 2 \cos(2t), \quad \frac{d}{dt} \left( (1 + \cos(2t)) \right) = -2 \sin(2t)
\]
Substitute these values:
\[
\frac{dx}{dt} = a \left[ 2 \cos(2t) (1 + \cos(2t)) + \sin(2t) (-2 \sin(2t)) \right]
\]
Simplify:
\[
\frac{dx}{dt} = 2a \cos(2t) (1 + \cos(2t)) - 2a \sin^2(2t)
\]
Step 4: Calculate \( \frac{dy}{dx} \).
Now, use the chain rule to calculate \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{2a \sin(2t) \left( 2 \cos(2t) - 1 \right)}{2a \cos(2t) \left( 1 + \cos(2t) \right) - 2a \sin^2(2t)}
\]
Simplify the expression:
\[
\frac{dy}{dx} = \frac{\sin(2t) \left( 2 \cos(2t) - 1 \right)}{\cos(2t) \left( 1 + \cos(2t) \right) - \sin^2(2t)}
\]
Answer: Therefore, the correct answer is option (4): \( \frac{b}{a \tan(t)} \).