>
Exams
>
Mathematics
>
Vector Algebra
>
given that mathbf a times 2 hat i 3 hat j 4 hat k
Question:
Given that \( \mathbf{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \mathbf{b} \), \( |\mathbf{a} + \mathbf{b}| = \sqrt{29} \), \( \mathbf{a} \cdot \mathbf{b} = ? \)
Show Hint
For problems involving cross products and dot products of parallel vectors, the cross product is zero, and the dot product simplifies based on the magnitudes and directions of the vectors.
KEAM - 2025
KEAM
Updated On:
Apr 28, 2025
0
5
10
15
Hide Solution
Verified By Collegedunia
The Correct Option is
A
Solution and Explanation
The equation \( \mathbf{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \mathbf{b} \) implies that \( \mathbf{a} \) and \( \mathbf{b} \) are parallel to the vector \( (2\hat{i} + 3\hat{j} + 4\hat{k}) \). Hence, \( \mathbf{a} = \lambda (2\hat{i} + 3\hat{j} + 4\hat{k}) \) and \( \mathbf{b} = \mu (2\hat{i} + 3\hat{j} + 4\hat{k}) \) for some scalar constants \( \lambda \) and \( \mu \). The condition \( |\mathbf{a} + \mathbf{b}| = \sqrt{29} \) implies: \[ |\lambda (2\hat{i} + 3\hat{j} + 4\hat{k}) + \mu (2\hat{i} + 3\hat{j} + 4\hat{k})| = \sqrt{29} \] This results in \( |\lambda + \mu| \times \sqrt{29} = \sqrt{29} \), which gives \( \lambda + \mu = 1 \). Finally, the dot product \( \mathbf{a} \cdot \mathbf{b} = \lambda \mu |\mathbf{a}|^2 \). Since \( \mathbf{a} \) and \( \mathbf{b} \) are parallel, \( \mathbf{a} \cdot \mathbf{b} = 0 \).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Vector Algebra
Given that \( \vec{a} \parallel \vec{b} \), \( \vec{a} \cdot \vec{b} = \frac{49}{2} \), and \( |\vec{a}| = 7 \), find \( |\vec{b}| \).
KEAM - 2025
Mathematics
Vector Algebra
View Solution
Given that \( \mathbf{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \mathbf{b} \), \( |\mathbf{a} + \mathbf{b}| = \sqrt{29} \), \( \mathbf{a} \cdot \mathbf{b} = ? \)
KEAM - 2025
Mathematics
Vector Algebra
View Solution
If \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar vectors and \( \lambda \) is a real number, then the vectors \( \vec{a} + 2\vec{b} + 3\vec{c} \), \( \lambda \vec{b} + 4\vec{c} \), and \( (2\lambda - 1)\vec{c} \) are non-coplanar for:
WBJEE - 2025
Mathematics
Vector Algebra
View Solution
If \( \vec{\alpha} = 3\hat{i} - \hat{j} + \hat{k} \), \( |\vec{\beta}| = \sqrt{5} \) and \( \vec{\alpha} \cdot \vec{\beta} = 3 \), then the area of the parallelogram for which \( \vec{\alpha} \) and \( \vec{\beta} \) are adjacent sides is:
WBJEE - 2025
Mathematics
Vector Algebra
View Solution
Let \( \vec{a}, \vec{b}, \vec{c} \) be unit vectors. Suppose \( \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} = 0 \) and the angle between \( \vec{b} \) and \( \vec{c} \) is \( \frac{\pi}{6} \). Then \( \vec{a} \) is:
WBJEE - 2025
Mathematics
Vector Algebra
View Solution
View More Questions
Questions Asked in KEAM exam
The acceleration of a particle varies with time as
\( a = 6t \).
What is the displacement and velocity of the particle at
\( t = 4s \)?
KEAM - 2025
Acceleration
View Solution
Water flows through a pipe with velocity \( V_1 = 3 \, \text{m/s} \) where the area of the pipe is \( A_1 \). What is the velocity \( V_2 \), where the diameter of the pipe is half of that at area \( A_1 \)?
KEAM - 2025
mechanical properties of fluid
View Solution
Evaluate the integral:
\[ \int \frac{2x^2 + 4x + 3}{x^2 + x + 1} \, dx \]
KEAM - 2025
Integration
View Solution
\( E^\circ_{\text{Cell}} = 1.1 \, \text{V}. \, \text{Find} \, E_{\text{Cell}} \, \text{for the reaction:} \, \text{Zn} + \text{Cu}^{2+} \, (0.1M) \rightleftharpoons \text{Zn}^{2+} \, (0.001M) + \text{Cu} \)
KEAM - 2025
Galvanic Cells
View Solution
If
\[ \frac{x}{4} + \frac{x}{3} < 13, \text{ then } x \in \]
KEAM - 2025
linear inequalities in one variable
View Solution
View More Questions