Step 1: For isothermal processes, the change in internal energy of an ideal gas is zero. The first law of thermodynamics gives the relationship \( q = -w \). The work done during an isothermal irreversible process can be calculated as \( P_{\text{ext}} (V_{\text{final}} - V_{\text{initial}}) \), which matches Statement-I. Therefore, Statement-I is correct.
Step 2: For an adiabatic process, there is no heat exchange (\( q = 0 \)), and the change in internal energy is equal to the work done, \( \Delta U = W_{\text{adiabatic}} \), which matches Statement-II. Therefore, Statement-II is also correct. Thus, both Statement-I and Statement-II are correct.
The decomposition of a compound A follows first-order kinetics. The concentration of A at time t = 0 is 1.0 mol L-1. After 60 minutes, it reduces to 0.25 mol L-1. What is the initial rate of the reaction at t = 0? (Take ln 2 = 0.693)