The question provides two statements to analyze, and we need to determine the validity of each statement.
Given these considerations, both statements are accurate:
Conclusion: The correct answer is that both Statement I and Statement II are correct.
Statement I: Ammonium carbonate (NH4)2CO3 is basic in solution because it forms a weak acid (NH4+) and a weak base (CO32-). The carbonate ion (CO32-) can accept protons, making the solution basic.
Statement II: This statement is also correct as the pH of a salt solution formed from a weak acid and a weak base depends on the relative values of Ka and Kb.
So, Statement I and II both are correct.
Consider the following equilibrium,
CO(g) + 2H2(g) ↔ CH3OH(g)
0.1 mol of CO along with a catalyst is present in a 2 dm3 flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH3OH is formed. The Kp is ____ × 10-3 (nearest integer).
Given: R = 0.08 dm3 bar K-1mol-1
Assume only methanol is formed as the product and the system follows ideal gas behaviour.
The pH of a 0.01 M weak acid $\mathrm{HX}\left(\mathrm{K}_{\mathrm{a}}=4 \times 10^{-10}\right)$ is found to be 5 . Now the acid solution is diluted with excess of water so that the pH of the solution changes to 6 . The new concentration of the diluted weak acid is given as $\mathrm{x} \times 10^{-4} \mathrm{M}$. The value of x is _______ (nearest integer).
A body of mass $m$ is suspended by two strings making angles $\theta_{1}$ and $\theta_{2}$ with the horizontal ceiling with tensions $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ simultaneously. $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ are related by $\mathrm{T}_{1}=\sqrt{3} \mathrm{~T}_{2}$. the angles $\theta_{1}$ and $\theta_{2}$ are