Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : A spherical equipotential surface is not possible for a point charge.
Reason (R) : A spherical equipotential surface is possible inside a spherical capacitor.
In the light of the above statements, choose the correct answer from the options given below
A point source of light is placed at the focus of a concave mirror. Consider only paraxial rays. The shapes of the wavefronts of incident and reflected lights respectively are:
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : 02 is liberated in the non-cyclic photophosphorylation.
Reason (R) : Liberation of oxygen is due to photolysis of water.
In the light of the above statements, choose the correct answer from the options given below
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : The Cro-Magnon man was the direct ancestor of the living modern man.
Reason (R) : Cro-Magnon man had slightly prognathous face.
In the light of the above statements, choose the correct answer from the options given below
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : In eukaryotes, transcription occurs in nucleus.
Reason (R) : In bacteria, transcription and translation occurs in cytoplasm.
In the light of the above statements, choose the correct answer from the options given below
The electrostatic potential is also known as the electric field potential, electric potential, or potential drop is defined as “The amount of work that is done in order to move a unit charge from a reference point to a specific point inside the field without producing an acceleration.”
SI unit of electrostatic potential - volt
Other units - statvolt
Symbol of electrostatic potential - V or φ
Dimensional formula - ML2T3I-1
The electric potential energy of the system is given by the following formula:
U = 1/(4πεº) × [q1q2/d]
Where q1 and q2 are the two charges that are separated by the distance d.