We are given the function \( g(a_p, a_q) \) defined as follows:
If \( |p - q| \leq (n - 4) \), then \( g(a_p, a_q) = a_{|p - q|} \)
Otherwise, \( g(a_p, a_q) = a_{n - |p - q|} \)
Step 1: Compute \( g(a_2, a_8) \):
\(|2 - 8| = 6 \), and since \( 6 \leq 6 \), use first case:
\(\Rightarrow g(a_2, a_8) = a_6 \)
Step 2: Compute \( g(a_1, a_7) \):
\(|1 - 7| = 6 \), and \( 6 \leq 6 \), so:
\(\Rightarrow g(a_1, a_7) = a_6 \)
Step 3: Compute \( g(a_6, a_6) \):
\(|6 - 6| = 0 \), and \( 0 \leq 6 \), so:
\(\Rightarrow g(a_6, a_6) = a_0 \)
Final Answer: \(\boxed{a_0}\)