Let the range of the function \[ f(x) = \frac{1}{2 + \sin 3x + \cos 3x}, \, x \in \mathbb{R} \, \text{be } [a, b]. \] If \( \alpha \) and \( \beta \) are respectively the arithmetic mean (A.M.) and the geometric mean (G.M.) of \( a \) and \( b \), then \( \frac{\alpha}{\beta} \) is equal to: