Consider the sets $A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 = 25\}$, $B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + 9y^2 = 144\}$, $C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \leq 4\}$, and $D = A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is: