Lines with x-intercept 3 have the form:
\[ \frac{x}{3} + \frac{y}{b} = 1 \Rightarrow y = -\frac{b}{3} x + b. \] Slope-intercept form: \( y = mx + b \), where x-intercept \( x = 3 \):
\[ 0 = 3m + b \Rightarrow b = -3m. \] Thus, \( y = mx - 3m \).
Differentiate:
\[ \frac{dy}{dx} = m. \] Substitute \( m = \frac{dy}{dx} \) into \( y = mx - 3m \):
\[ y = \frac{dy}{dx} x - 3 \frac{dy}{dx} \Rightarrow y = x \frac{dy}{dx} - 3 \frac{dy}{dx} \Rightarrow y = \left( x - 3 \right) \frac{dy}{dx}. \] \[ \left( x - 3 \right) \frac{dy}{dx} - y = 0. \] Answer: \( \left( x - 3 \right) \frac{dy}{dx} - y = 0 \).
Let \( y = y(x) \) be the solution of the differential equation \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] such that \( y(0) = \frac{5}{4} \). Then \[ 12 \left( y\left( \frac{\pi}{4} \right) - e^{-2} \right) \] is equal to _____.