Let \(\theta=\tan^{-1}x $\Rightarrow$ x=\tan\theta\) with \(\theta\in[-\pi/4,\pi/4]\).
Use $\sin(2\theta)=\dfrac{2\tan\theta}{1+\tan^2\theta}$:
\[
\sin(2\theta)=\frac{2x}{1+x^2}.
\]
Since \(2\theta\in[-\pi/2,\pi/2]\), \(\sin^{-1}\) returns \(2\theta\):
\[
2\tan^{-1}x=2\theta=\sin^{-1}\!\left(\frac{2x}{1+x^2}\right).
\]