Step 1: Recall the condition for equal roots.
A quadratic equation \( ax^2 + bx + c = 0 \) has equal roots if its discriminant \( D = b^2 - 4ac \) is zero.
Step 2: Compute the discriminant.
Here, \( a = 9 \), \( b = 3k \), and \( c = 4 \). The discriminant is:
\[ D = (3k)^2 - 4(9)(4). \]
Simplify:
\[ D = 9k^2 - 144. \]
Step 3: Set the discriminant to zero and solve for \( k \).
\[ 9k^2 - 144 = 0 \implies 9k^2 = 144 \implies k^2 = 16 \implies k = \pm 4. \]
Final Answer: The value of \( k \) is \( \mathbf{\pm 4} \), which corresponds to option \( \mathbf{(3)} \).
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :