First, compute \(\vec{B} \times \vec{C}\):
\[ \vec{B} \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix} \]
\[ \vec{B} \times \vec{C} = \hat{i}(12 + 3) - \hat{j}(-3 + 24) + \hat{k}(-1 - (-32)) \]
\[ \vec{B} \times \vec{C} = 15\hat{i} - 21\hat{j} + 33\hat{k} \]
Now, compute \(\vec{A} \cdot (\vec{B} \times \vec{C})\):
\[ \vec{A} \cdot (\vec{B} \times \vec{C}) = (-x\hat{i} - 6\hat{j} - 2\hat{k}) \cdot (15\hat{i} - 21\hat{j} + 33\hat{k}) \]
\[ \vec{A} \cdot (\vec{B} \times \vec{C}) = (-x)(15) + (-6)(-21) + (-2)(33) \]
\[ \vec{A} \cdot (\vec{B} \times \vec{C}) = -15x + 126 - 66 \]
\[ \vec{A} \cdot (\vec{B} \times \vec{C}) = -15x + 60 \]
Since \(\vec{A} \cdot (\vec{B} \times \vec{C}) = 0\), we get:
\[ -15x + 60 = 0 \]
\[ 15x = 60 \]
\[ x = 4 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: