For the reaction at 25° C, X2O4 (l) → 2XO2(g), U and S are 2.1 K.Cal and 20 Cal/K respectively. what is G for the reaction at the same temperature? (R = 2 CAL K-1MOL-1)
-2.67 k.Cal
2.67 k.Cal
-1.67 k.Cal
3.67k.Cal
The correct option is: (A): -2.67 k.Cal
List - IMolecule | List - IIBond enthalpy (kJ mol-1) |
---|---|
(A) HCl | (I) 435.8 |
(B) N2 | (II) 498 |
(C) H2 | (III) 946.0 |
(D) O2 | (IV) 431.0 |
List-I (Compound / Species) | List-II (Shape / Geometry) |
---|---|
(A) \(SF_4\) | (I) Tetrahedral |
(B) \(BrF_3\) | (II) Pyramidal |
(C) \(BrO_{3}^{-}\) | (III) See saw |
(D) \(NH^{+}_{4}\) | (IV) Bent T-shape |
The ratio of the radii of two solid spheres of same mass in 2:3. The ratio of the moments of inertia of the spheres about their diameters is:
If (-c, c) is the set of all values of x for which the expansion is (7 - 5x)-2/3 is valid, then 5c + 7 =
The general solution of the differential equation (x2 + 2)dy +2xydx = ex(x2+2)dx is
If i=√-1 then
\[Arg\left[ \frac{(1+i)^{2025}}{1+i^{2022}} \right] =\]If nCr denotes the number of combinations of n distinct things taken r at a time, then the domain of the function g (x)= (16-x)C(2x-1) is
Such a group of atoms is called a molecule. Obviously, there must be some force that holds these constituent atoms together in the molecules. The attractive force which holds various constituents (atoms, ions, etc.) together in different chemical species is called a chemical bond.
There are 4 types of chemical bonds which are formed by atoms or molecules to yield compounds.