For the reaction $ A \rightarrow $ products,
The reaction was started with 2.5 mol L\(^{-1}\) of A.
From the graph, we know that \( t_{1/2} \) is proportional to \( [A] \).
The slope is given as 76.92. Thus, using the equation for zero-order reaction: \[ t_{1/2} = \frac{A_0}{2K} \quad \text{where} \quad \text{slope} = \frac{1}{2K} = 76.92 \] Thus, \[ K = \frac{1}{2 \times 76.92} = \frac{1}{153.84} \] Now, applying the formula for zero-order reaction: \[ [A] = - Kt + A_0 \] \[ [A] = - \frac{1}{2 \times 76.92} \times 10 + 2.5 = 2.435 \, \text{mol/L} \] Thus, the concentration of A at 10 minutes is \( 2435 \times 10^{-3} \, \text{mol/L} \).
For product formation from only one type of reactant (e.g. A \(\rightarrow\) product), the CORRECT match for the order of the reaction (given in Column I) with the half-life expression (given in Column II) is:
(\([A]_0 \) is the initial concentration and \( k_r \) is the rate constant)
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: