For the reaction $ A \rightarrow $ products,
The reaction was started with 2.5 mol L\(^{-1}\) of A.
From the graph, we know that \( t_{1/2} \) is proportional to \( [A] \).
The slope is given as 76.92. Thus, using the equation for zero-order reaction: \[ t_{1/2} = \frac{A_0}{2K} \quad \text{where} \quad \text{slope} = \frac{1}{2K} = 76.92 \] Thus, \[ K = \frac{1}{2 \times 76.92} = \frac{1}{153.84} \] Now, applying the formula for zero-order reaction: \[ [A] = - Kt + A_0 \] \[ [A] = - \frac{1}{2 \times 76.92} \times 10 + 2.5 = 2.435 \, \text{mol/L} \] Thus, the concentration of A at 10 minutes is \( 2435 \times 10^{-3} \, \text{mol/L} \).
For product formation from only one type of reactant (e.g. A \(\rightarrow\) product), the CORRECT match for the order of the reaction (given in Column I) with the half-life expression (given in Column II) is:
(\([A]_0 \) is the initial concentration and \( k_r \) is the rate constant)