Step 1: General rate expression.
For the reaction:
\[
2A + B \longrightarrow 2C + 3D
\]
The rate of reaction is given by:
\[
\text{Rate} = -\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{1}{2}\frac{d[C]}{dt} = \frac{1}{3}\frac{d[D]}{dt}
\]
Step 2: Given data.
\[
\frac{d[C]}{dt} = +1.0 \, \text{mol L}^{-1}\text{s}^{-1}
\]
Step 3: Calculate rate of reaction.
\[
\text{Rate} = \frac{1}{2}\frac{d[C]}{dt} = \frac{1}{2}(1.0) = 0.5 \, \text{mol L}^{-1}\text{s}^{-1}
\]
Step 4: Calculate rate of change of other species.
- For A:
\[
-\frac{1}{2}\frac{d[A]}{dt} = 0.5 \quad \Rightarrow \quad \frac{d[A]}{dt} = -1.0 \, \text{mol L}^{-1}\text{s}^{-1}
\]
- For B:
\[
-\frac{d[B]}{dt} = 0.5 \quad \Rightarrow \quad \frac{d[B]}{dt} = -0.5 \, \text{mol L}^{-1}\text{s}^{-1}
\]
- For D:
\[
\frac{1}{3}\frac{d[D]}{dt} = 0.5 \quad \Rightarrow \quad \frac{d[D]}{dt} = +1.5 \, \text{mol L}^{-1}\text{s}^{-1}
\]
Conclusion:
- Rate of reaction = $0.5 \, \text{mol L}^{-1}\text{s}^{-1}$
- Rate of change: $d[A]/dt = -1.0$, $d[B]/dt = -0.5$, $d[C]/dt = +1.0$, $d[D]/dt = +1.5$ mol L$^{-1}$s$^{-1}$.