Question:

For the ideal opamp based circuit shown in the figure, the ratio \( \frac{V}{I} \) is


 

Show Hint

For ideal opamp circuits, always start with the virtual short ($V_+ = V_-$) and then apply Kirchhoff's Current Law (KCL) at the input nodes. Express the voltages at the non-inverting and inverting inputs in terms of the circuit variables and solve the resulting equations.
Updated On: Apr 25, 2025
  • $\left(\frac{R_2 + R_4}{R_1 + R_3}\right) R_1$
  • $\left(\frac{R_2 + R_4}{R_1 + R_3}\right) R_3$
  • $R_1 + R_3$
  • $R_3 + R_4$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Apply the ideal opamp characteristics.
For an ideal opamp, the voltage at the non-inverting input (\(V_+\)) is equal to the voltage at the inverting input (\(V_-\)), i.e., \(V_+ = V_-\). Also, no current flows into the input terminals of the ideal opamp.
Step 2: Apply KCL at the inverting node.
Let the voltage at the inverting input be \(V_-\). The current \(I\) enters the inverting node. The current flowing through \(R_1\) is \(\frac{V - V_-}{R_1}\), and the current flowing through \(R_2\) is \(\frac{V_o - V_-}{R_2}\). According to KCL:
$$I + \frac{V - V_-}{R_1} + \frac{V_o - V_-}{R_2} = 0$$
Step 3: Express \(V_+\) in terms of \(V_o\).
The non-inverting input is connected to a voltage divider formed by \(R_3\) and \(R_4\):
$$V_+ = \frac{R_4}{R_3 + R_4} V_o$$
Step 4: Use the virtual short concept (\(V_+ = V_-\)).
$$V_- = \frac{R_4}{R_3 + R_4} V_o$$
Step 5: Substitute \(V_-\) in the KCL equation.
$$I + \frac{V - \frac{R_4}{R_3 + R_4} V_o}{R_1} + \frac{V_o - \frac{R_4}{R_3 + R_4} V_o}{R_2} = 0$$
$$I + \frac{V(R_3 + R_4) - R_4 V_o}{R_1(R_3 + R_4)} + \frac{V_o(R_3 + R_4) - R_4 V_o}{R_2(R_3 + R_4)} = 0$$
$$I + \frac{V(R_3 + R_4) - R_4 V_o}{R_1(R_3 + R_4)} + \frac{V_o R_3}{R_2(R_3 + R_4)} = 0$$
Multiply by \(R_1 R_2 (R_3 + R_4)\):
$$I R_1 R_2 (R_3 + R_4) + R_2 (V(R_3 + R_4) - R_4 V_o) + R_1 R_3 V_o = 0$$
$$I R_1 R_2 (R_3 + R_4) + V R_2 (R_3 + R_4) - V_o R_2 R_4 + V_o R_1 R_3 = 0$$
$$V R_2 (R_3 + R_4) + I R_1 R_2 (R_3 + R_4) = V_o (R_2 R_4 - R_1 R_3)$$
$$V_o = \frac{V R_2 (R_3 + R_4) + I R_1 R_2 (R_3 + R_4)}{R_2 R_4 - R_1 R_3}$$
Now substitute \(V_o\) back into \(V_- = \frac{R_4}{R_3 + R_4} V_o\):
$$V_- = \frac{R_4}{R_3 + R_4} \frac{V R_2 (R_3 + R_4) + I R_1 R_2 (R_3 + R_4)}{R_2 R_4 - R_1 R_3} = \frac{R_4 (V R_2 + I R_1 R_2)}{R_2 R_4 - R_1 R_3}$$
We also have \(V_- = V - IR_1\):
$$V - IR_1 = \frac{V R_2 R_4 + I R_1 R_2 R_4}{R_2 R_4 - R_1 R_3}$$
$$V(R_2 R_4 - R_1 R_3) - IR_1(R_2 R_4 - R_1 R_3) = V R_2 R_4 + I R_1 R_2 R_4$$
$$- V R_1 R_3 + I R_1^2 R_3 = 2 I R_1 R_2 R_4$$
$$\frac{V}{I} = \frac{R_1^2 R_3 + 2 R_1 R_2 R_4}{R_1 R_3} = R_1 + 2 \frac{R_2 R_4}{R_3}$$ (Still not matching)
Given the provided correct answer, there might be a simpler way or a specific configuration assumed. Let's reconsider the circuit with the virtual short \(V_+ = V_-\).
\(V_+ = \frac{R_4}{R_3+R_4} V_o\)
\(V_- = V - IR_1\)
\(V - IR_1 = \frac{R_4}{R_3+R_4} V_o\)
Also, the current through \(R_2\) is \(\frac{V_- - V_o}{R_2}\). By KCL at the inverting node:
\(I + \frac{V - V_-}{R_1} = \frac{V_- - V_o}{R_2}\)
\(I = \frac{V_- - V_o}{R_2} - \frac{V - V_-}{R_1}\)
\(I = V_- (\frac{1}{R_2} + \frac{1}{R_1}) - \frac{V_o}{R_2} - \frac{V}{R_1}\)
\(I = \frac{R_4}{R_3+R_4} V_o (\frac{R_1+R_2}{R_1 R_2}) - \frac{V_o}{R_2} - \frac{V}{R_1}\)
\(I + \frac{V}{R_1} = V_o (\frac{R_4 (R_1+R_2)}{R_1 R_2 (R_3+R_4)} - \frac{1}{R_2}) = V_o \frac{R_4 R_1 + R_4 R_2 - R_1 (R_3+R_4)}{R_1 R_2 (R_3+R_4)} = V_o \frac{R_4 R_2 - R_1 R_3}{R_1 R_2 (R_3+R_4)}\)
\(V_o = \frac{(I R_1 + V) R_1 R_2 (R_3+R_4)}{R_4 R_2 - R_1 R_3}\)
From \(V - IR_1 = \frac{R_4}{R_3+R_4} V_o\):
\(V - IR_1 = \frac{R_4}{R_3+R_4} \frac{(I R_1 + V) R_1 R_2 (R_3+R_4)}{R_4 R_2 - R_1 R_3} = \frac{R_4 (I R_1 + V) R_1 R_2}{R_4 R_2 - R_1 R_3}\)
\((V - IR_1)(R_4 R_2 - R_1 R_3) = R_4 (I R_1 + V) R_1 R_2\)
\(V R_4 R_2 - V R_1 R_3 - I R_1 R_4 R_2 + I R_1^2 R_3 = I R_1^2 R_4 R_2 + V R_1 R_4 R_2\)
\(V (R_4 R_2 - R_1 R_3 - R_1 R_4 R_2) = I (R_1 R_4 R_2 - R_1^2 R_3 + R_1^2 R_4 R_2)\)
\(\frac{V}{I} = \frac{R_1 R_4 R_2 - R_1^2 R_3 + R_1^2 R_4 R_2}{R_4 R_2 - R_1 R_3 - R_1 R_4 R_2}\)
Was this answer helpful?
0
0