Step 1: Define the domain.
The function is
\[
f(x) = x\sqrt{4 - x^2}.
\]
Since the square root requires \(4 - x^2 \geq 0\), we have domain \(-2 \leq x \leq 2\).
Step 2: Differentiate the function.
Let
\[
f(x) = x (4 - x^2)^{1/2}.
\]
Using product rule:
\[
f'(x) = (1) . (4 - x^2)^{1/2} + x . \frac{1}{2}(4 - x^2)^{-1/2} . (-2x).
\]
Simplify:
\[
f'(x) = \sqrt{4 - x^2} - \frac{x^2}{\sqrt{4 - x^2}}.
\]
Step 3: Set derivative = 0.
\[
f'(x) = \frac{(4 - x^2) - x^2}{\sqrt{4 - x^2}} = \frac{4 - 2x^2}{\sqrt{4 - x^2}}.
\]
So,
\[
f'(x) = 0 \Rightarrow 4 - 2x^2 = 0 \Rightarrow x^2 = 2 \Rightarrow x = \pm \sqrt{2}.
\]
Step 4: Evaluate function at critical points and boundaries.
- At \(x = -2\):
\[
f(-2) = -2 . \sqrt{4 - 4} = 0.
\]
- At \(x = 2\):
\[
f(2) = 2 . \sqrt{4 - 4} = 0.
\]
- At \(x = \sqrt{2}\):
\[
f(\sqrt{2}) = \sqrt{2} . \sqrt{4 - 2} = \sqrt{2} . \sqrt{2} = 2.
\]
- At \(x = -\sqrt{2}\):
\[
f(-\sqrt{2}) = -\sqrt{2} . \sqrt{2} = -2.
\]
Step 5: Choose the maximum.
The maximum value in \([-2,2]\) is:
\[
f(x)_{\max} = 2.
\]
Rounded to two decimal places:
\[
f(x)_{\max} = 2.00
\]
Final Answer:
\[
\boxed{2.00}
\]