Question:

For the function π‘“βˆΆβ„Γ—β„β†’β„ defined by 𝑓(π‘₯, 𝑦)=2π‘₯2-π‘₯𝑦-3𝑦 2-3π‘₯+7𝑦 , the point (1,1) is

Updated On: Nov 17, 2025
  • a point of local maximum
  • a point of local minimum
  • a saddle point
  • NOT a critical point
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To determine the nature of the point \((1, 1)\) for the function \(f(x, y) = 2x^2 - xy - 3y^2 - 3x + 7y\), we will use the second derivative test for functions of two variables.

First, find the first partial derivatives: 

  • \(f_x = \frac{\partial f}{\partial x} = 4x - y - 3\).
  • \(f_y = \frac{\partial f}{\partial y} = -x - 6y + 7\).

Setting these partial derivatives to zero, we find critical points.

Solving \(4x - y - 3 = 0\) and \(-x - 6y + 7 = 0\):

  • From \(4x - y - 3 = 0\), we have \(y = 4x - 3\).
  • Substitute \(y = 4x - 3\) into \(-x - 6y + 7 = 0\):
    • \(-x - 6(4x - 3) + 7 = 0\)
    • \(-x - 24x + 18 + 7 = 0\)
    • \(-25x + 25 = 0 \Rightarrow x = 1\)
  • Then \(y = 4(1) - 3 = 1\)

So, the point \((1, 1)\) is a critical point.

Next, find the second order partial derivatives:

  • \(f_{xx} = \frac{\partial^2 f}{\partial x^2} = 4\).
  • \(f_{yy} = \frac{\partial^2 f}{\partial y^2} = -6\).
  • \(f_{xy} = f_{yx} = \frac{\partial^2 f}{\partial x \partial y} = -1\).

The second derivative test for functions of two variables involves calculating the determinant of the Hessian matrix at the critical point:

Hessian Matrix, \(H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}\)
\(= \begin{bmatrix} 4 & -1 \\ -1 & -6 \end{bmatrix}\)  

Calculate the determinant of this matrix:

  • \(D = f_{xx}f_{yy} - (f_{xy})^2 = (4)(-6) - (-1)^2 = -24 - 1 = -25\)

Since \(D < 0\), the point \((1, 1)\) is a saddle point.

Thus, the correct answer is: a saddle point.

Was this answer helpful?
0
0

Questions Asked in IIT JAM MS exam

View More Questions