For Particular Integral, Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | \( \frac{1}{(D-1)} x^2 \) | I. | \( xe^x \) |
B. | \( \frac{1}{D^2+D+1} \cos x \) | II. | \( \sin x \) |
C. | \( \frac{1}{(D-1)^2} e^x \) | III. | \( \frac{x^2 e^x}{2} \) |
D. | \( \frac{1}{D^3-3D^2+4D-2} e^x \) | IV. | \( -(x^2 + 2x + 2) \) |
(Note: List-I Item A is assumed to be \( \frac{1}{D-1} x^2 \) based on the options)
If \( x = r\cos\theta, y = r\sin\theta \) then Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | \( \frac{\partial r}{\partial x} \) | I. | \( \frac{1}{r} \) |
B. | \( \frac{\partial r}{\partial y} \) | II. | \( \frac{y}{r} \) |
C. | \( \frac{\partial(x,y)}{\partial(r,\theta)} \) | III. | \( \frac{x}{r} \) |
D. | \( \frac{\partial(r,\theta)}{\partial(x,y)} \) | IV. | \( r \) |
(Note: There is a typo in the question; it should be \( y = r \sin\theta \))
Match List-I with List-II
Choose the correct answer from the options given below:
A weight of $500\,$N is held on a smooth plane inclined at $30^\circ$ to the horizontal by a force $P$ acting at $30^\circ$ to the inclined plane as shown. Then the value of force $P$ is:
A steel wire of $20$ mm diameter is bent into a circular shape of $10$ m radius. If modulus of elasticity of wire is $2\times10^{5}\ \text{N/mm}^2$, then the maximum bending stress induced in wire is: