(i) Let f (x) = (x - a) (x + b) f(x) = x2-(a+b)x+ab ∴ ƒ'(x) = \(\frac{d}{dx}\)(x2 - (a + b)x + ab) =\(\frac{d}{dx}\) (x2) -(a+b)\(\frac{d}{dx}\)(x) + \(\frac{d}{dx}\)(ab) On using theorem \(\frac{d}{dx}\)(xn) = nxn-1, we obtain f'(x)=2x-(a+b)+0=2x-a-b (ii) Let f(x)=(ax2 +b)2 ⇒f(x)=a2x4+2abx2+b2 ∴ ƒ′(x) = (a2x4+2abx2+b2) = a2\(\frac{d}{dx}\)(x4)+2ab\(\frac{d}{dx}\)(x2)+\(\frac{d}{dx}\)(b2) On using theorem \(\frac{d}{dx}\) xn= nxn-1, we obtain f'(x)=a2(4x3)+2ab (2x)+b2(0) =4a2x3+4abx =4ax(ax2+b) (iii)Let f (x)=\(\frac{(x-a)}{(x-b)}\) ⇒f'(x)=\(\frac{(x-a)}{(x-b)}\) By quotient rule, \(\frac{(x-b)\frac{d}{dx}(x-a)-(x-a)\frac{d}{dx}(x-b)}{(x-b)^2}\) = \(\frac{(x-b)(1)-(x-a)(1)}{(x-b)^2}\) = \(\frac{x-b-x+a}{(x-b)^2}\) =\(\frac{a-b}{(x-b)^2}\)