For real constants $a$ and $b$, let \[ f(x) = \begin{cases} \frac{a \sin x - 2x}{x}, & x < 0 \\ bx, & x \ge 0 \end{cases} \]
If $f$ is a differentiable function, then the value of $a + b$ is
Step 1: Continuity at $x = 0$.
For $f$ to be continuous at $x = 0$, \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x). \] For $x < 0$, \[ \lim_{x \to 0^-} \frac{a \sin x - 2x}{x} = a - 2. \] For $x \ge 0$, \[ \lim_{x \to 0^+} bx = 0. \] So, continuity gives $a - 2 = 0 $\Rightarrow$ a = 2$.
Step 2: Differentiability at $x = 0$.
For differentiability, \[ \lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} f'(x). \] For $x < 0$, \[ f'(x) = \frac{a(x \cos x - \sin x) - 2x}{x^2}. \] As $x \to 0$, \[ f'(0^-) = -\frac{a}{3} \text{ (by L'Hôpital's rule or Taylor expansion)}. \] For $x > 0$, $f'(x) = b$. So $f'(0^+) = b$. Differentiability gives $f'(0^-) = f'(0^+) $ $\Rightarrow$ $ b = a - 2$. Substitute $a = 2$, we get $b = 0$.
Step 3: Conclusion.
\[ a + b = 2 + 0 = 2. \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is: