Consider a velocity field \( \vec{V} = 3z \hat{i} + 0 \hat{j} + Cx \hat{k} \), where \( C \) is a constant. If the flow is irrotational, the value of \( C \) is (rounded off to 1 decimal place).
A pitot tube connected to a U-tube mercury manometer measures the speed of air flowing in the wind tunnel as shown in the figure below. The density of air is 1.23 kg m\(^{-3}\) while the density of water is 1000 kg m\(^{-3}\). For the manometer reading of \( h = 30 \) mm of mercury, the speed of air in the wind tunnel is _________ m s\(^{-1}\) (rounded off to 1 decimal place).
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?
The plot of \( \log_{10} ({BMR}) \) as a function of \( \log_{10} (M) \) is a straight line with slope 0.75, where \( M \) is the mass of the person and BMR is the Basal Metabolic Rate. If a child with \( M = 10 \, {kg} \) has a BMR = 600 kcal/day, the BMR for an adult with \( M = 100 \, {kg} \) is _______ kcal/day. (rounded off to the nearest integer)
For the RLC circuit shown below, the root mean square current \( I_{{rms}} \) at the resonance frequency is _______amperes. (rounded off to the nearest integer)
\[ V_{{rms}} = 240 \, {V}, \quad R = 60 \, \Omega, \quad L = 10 \, {mH}, \quad C = 8 \, \mu {F} \]
The frequency of the oscillator circuit shown in the figure below is _______(in kHz, rounded off to two decimal places).
Given: \( R = 1 \, k\Omega; R_1 = 2 \, k\Omega; R_2 = 6 \, k\Omega; C = 0.1 \, \mu F \)