The given equation is:
\[ \ln \left( \frac{x + y}{2} \right) = \frac{1}{2} \left[ \ln(x) + \ln(y) \right]. \]Using the logarithm property, \( \ln(ab) = \ln(a) + \ln(b) \), we write:
\[ \frac{1}{2} \left[ \ln(x) + \ln(y) \right] = \frac{1}{2} \ln(xy). \]Thus, the equation becomes:
\[ \ln \left( \frac{x + y}{2} \right) = \frac{1}{2} \ln(xy). \] Step 2: Exponentiate both sides.Exponentiating both sides, we get:
\[ \frac{x + y}{2} = \sqrt{xy}. \]Multiplying through by 2:
\[ x + y = 2\sqrt{xy}. \] Step 3: Divide through by \( \sqrt{xy} \).Dividing both sides by \( \sqrt{xy} \), we get:
\[ \frac{x}{\sqrt{xy}} + \frac{y}{\sqrt{xy}} = 2. \]Simplify the terms:
\[ \sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = 2. \] Step 4: Square both sides.Squaring both sides:
\[ \left( \sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} \right)^2 = 2^2. \]Expanding the square:
\[ \frac{x}{y} + \frac{y}{x} + 2 = 4. \] Step 5: Solve for \( \frac{x}{y} + \frac{y}{x} \).Subtracting 2 from both sides:
\[ \frac{x}{y} + \frac{y}{x} = 2. \]Thus, the value of \( \frac{x}{y} + \frac{y}{x} \) is \( \boxed{2} \).