We are given: \[ y(x + z) = 19 \tag{1} \] \[ z(x + y) = 51 \tag{2} \]
From equation (1): \[ y(x + z) = 19 \] Since 19 is a prime number, and \( y \) is a positive integer, the only integer values possible for \( y \) are 1 and 19.
If \( y = 1 \), then: \[ x + z = 19 \]
Try this value in equation (2): \[ z(x + 1) = 51 \tag{3} \] From equation (1), we now explore pairs \((x, z)\) such that \( x + z = 19 \)
Plug into equation (3): \[ z(x + 1) = 3 \times (16 + 1) = 3 \times 17 = 51 \quad \text{✔️ Satisfies} \] So, \[ xyz = x \cdot y \cdot z = 16 \cdot 1 \cdot 3 = 48 \]
Check equation (3): \[ z(x + 1) = 17 \cdot (2 + 1) = 17 \cdot 3 = 51 \quad \text{✔️ Satisfies} \] So, \[ xyz = 2 \cdot 1 \cdot 17 = 34 \]
The two valid solutions yield: \[ xyz = 48 \quad \text{and} \quad xyz = 34 \]
The minimum value is: \[ \boxed{34} \]