Step 1: Understanding the Concept:
This problem has two parts. First, we need to verify that the matrix \( A \) satisfies the given polynomial equation, which is its characteristic equation (Cayley-Hamilton Theorem). Second, we use this verified equation to find the inverse of matrix \( A \) without using the adjugate method.
Step 2: Verifying the Matrix Equation \( A^3 - 6A^2 + 5A + 11I = 0 \):
First, we calculate \( A^2 \) and \( A^3 \).
\[
A^2 = A \cdot A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}
\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}
= \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}
\]
\[
A^3 = A^2 \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}
\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}
= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}
\]
Now, substitute \( A^3, A^2, A \) and \( I \) into the equation:
\[
A^3 - 6A^2 + 5A + 11I
= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}
- 6 \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}
+ 5 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}
+ 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]
\[
= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0
\]
Thus, the equation is verified.
Step 3: Finding \( A^{-1} \) using the equation:
Starting with the verified equation:
\[
A^3 - 6A^2 + 5A + 11I = 0
\]
Multiply the entire equation by \( A^{-1} \):
\[
A^{-1}(A^3 - 6A^2 + 5A + 11I) = 0
\]
\[
A^2 - 6A + 5I + 11A^{-1} = 0
\]
Isolating \( A^{-1} \):
\[
11A^{-1} = -A^2 + 6A - 5I
\]
\[
A^{-1} = \frac{1}{11}(-A^2 + 6A - 5I)
\]
Substitute the matrices:
\[
A^{-1} = \frac{1}{11} \left( -\begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}
+ 6\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}
- 5\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)
\]
\[
A^{-1} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}
\]
Step 4: Final Answer:
The matrix equation is verified, and the inverse is:
\[
A^{-1} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1 \end{bmatrix}
\]