For each of the exercises given below, verify that the given function (implicit or explicit)
is a solution of the corresponding differential equation.
i) \(y=ae^x+be^{-x}+x^2: x\frac{d^2y}{dx^2}+2\frac{dy}{dx}-xy+x^2-2=0\)
ii) \(y=e^x(a \cos x+ b \sin x):\frac{d^2y}{dx^2}-2\frac{dy}{dx}+2y=0\)
iii) \(y= x \sin 3x:\frac{d^2y}{dx^2}+9y-6\cos3x=0\)
iv) \(x^2=2y^2\log y:(x^2+y^2)\frac{dy}{dx}-xy=0\)
(i) \(y=ae^x+be^{-x}+x^2\)
Differentiating both sides with respect to x, we get:
\(\frac{dy}{dx}=a\frac{d}{dx}(e^x)+b\frac{d}{dx}(e^{-x})+\frac{d}{dx}(x^2)\)
\(\Rightarrow \frac{dy}{dx}=ae^x-be^{-x}+2x\)
Again, differentiating both sides with respect to x we get:
\(\frac{d^2y}{dx^2}=ae^x+be^{-x}+2\)
Now ,on substituting the values of \(\frac{dy}{dx}\) and\(\frac{d^2y}{dx^2}\) in the differential equation, we get:
L.H.S.
x\(\frac{d^2y}{dx^2}\)+2\(\frac{dy}{dx}\)-xy+x2-2
=x(α\(e^x\)+b\(e^{-x}\)+2)+2(α\(e^x\)-b\(e^{-x}\)+2x)-x(α\(e^x\)+b\(e^{-x}\)+x2)+x2-2
=(αx\(e^x\)+bx\(e^{-x}\)+2x)+(2α\(e^x\)-2b\(e^{-x}\)+4x)-(αx\(e^x\)+bx\(e^{-x}\)+x3)+x2-2
=2α\(e^x\)-2b\(e^{-x}\)+x2+6x-2
≠0
⇒L.H.S.≠R.H.S.
Hence the given function is not a solution of the corresponding differential equation.
(ii) y=\(y=e^x(a \cos x+ b \sin x)=ae^x\cos x+be^x\sin x\)
Differentiating both sides with respect to x, we get:
\(\frac{dy}{dx}\)=α.\(\frac{d}{dx}\)(\(e^x\) cosx)+b.\(\frac{d}{dx}\)(\(e^x\) sinx)
⇒\(\frac{dy}{dx}\)=α(\(e^x\) cosx-ex sinx)+b.(\(e^x\) sinx+\(e^x\) cosx)
⇒\(\frac{dy}{dx}\)=(α+b)\(e^x\) cosx+(b-α)\(e^x\) sinx
Again, differentiating both sides with respect to x, we get:
\(\frac{d^2y}{dx^2}\)=(α+b).\(\frac{d}{dx}\)(\(e^x\) cosx)+(b-α)\(\frac{d}{dx}\)(\(e^x\) sinx)
\(\Rightarrow \frac{d^2y}{dx^2}\)=(α+b).[\(e^x\) cosx-ex sinx]+(b-α)[\(e^x\) sinx+ex cosx]
\(\Rightarrow \frac{d^2y}{dx^2}=e^x\)[(α+b)(cosx-sinx)+(b-α)(sinx+cosx)]
\(\Rightarrow\) \(\frac{d^2y}{dx^2}\)=\(e^x\)[αcosx-αsinx+bcosx-bsinx+bsinx+bcosx-αsinx-αcosx]
\(\Rightarrow \frac{d^2y}{dx^2}\)=[\(2e^x\)(bcosx-αsinx)]
Now ,on substituting the values of d2y/dx2 and \(\frac{dy}{dx}\) in the L.H.S. of the given differential equation, we get:
\(\frac{d^2y}{dx^2}+2\frac{dy}{dx}\)+2y
=\(2e^x\)(bcosx-αsinx)-2ex[(α+b)cosx+(b-α)sinx]+2ex(αcosx+bsinx)
=\(e^x\)[(2bcosx-2αsinx)-(2αcosx+2bsinx)-(2bsinx-2αsinx)+(2αcosx+2bsinx)]
=\(e^x\)[(2b-2α-2b-2α)cosx]+ex[(-2α-2b+2a+2b)sinx]
=0
Hence, the given function is a solution of the corresponding differential equation.
(iii) y=xsin3x
Differentiating both sides with respect to x, we get:
\(\frac{dy}{dx}=\frac{d}{dx}\)(xsin3x)=sin3x+x.cos3x.3
\(\Rightarrow \frac{dy}{dx}\)=sin3x+3xcos3x
Again, differentiating both sides with respect to x,we get:
\(\frac{d^2y}{dx^2}=\frac{d}{dx}\)(sin3x)+3\(\frac{d}{dx}\)(xcos3x)
\(\Rightarrow \frac{d^2y}{dx^2}\)=3cos3x+3[cos3x+x(-sin3x).3]
\(\Rightarrow \frac{d^2y}{dx^2}\)=6cos3x-9xsin3x
Substituting the value of \(\frac{d^2y}{dx^2}\) in the L.H.S. of the given differential equation, we get:
\(\frac{d^2y}{dx^2}\)2+9y-6cos3x
=(6.cos3x-9xsin3x)+9xsin3x-6cos3x
=0
Hence,the given function is a solution of the corresponding differential equation.
(iv)x2=2y2logy
Differentiating both sides with respect to x,we get:
2x=2.\(\frac{d}{Dx}\)=[y2log y]
\(\Rightarrow\) x=[2y.logy.\(\frac{dy}{dx}+y^2.\frac{1}{y}\).\(\frac{dy}{dx}\)]
\(\Rightarrow x=\frac{dy}{dx}\)(2ylogy+y)
\(\Rightarrow \frac{dy}{dx}=\frac{x}{y(1+2logy)}\)
Substituting the value of \(\frac{dy}{dx}\) in the L.H.S. of the given differential equation,we get:
\((x^2+y^2)\frac{dy}{dx}-xy\)
=\((2y^2\log y+y^2).\frac{x}{y(1+2\log y)}-xy\)
=\(y^2(1+2\log y).\frac{x}{y(1+2 log y)}-xy\)
=xy-xy
=0
Hence,the given function is a solution of the corresponding differential equation.
What is the Planning Process?