Let the percentage rise in:
Fuel be \( x \)%
Then, food = \( 2x \)%
Rent = \( y \)%
Miscellaneous = \( 2y \)%
We use the given weight system:
Food = 55, Fuel = 15, Clothing = 10, Rent = 10, Miscellaneous = 10
\medskip
First factory: D.A. increased by 82\% = fully compensates for food + rent only.
So index due to food and rent rise = 182 (i.e., 100 base + 82 increase)
Let’s compute weighted index from food and rent:
\[
\frac{55 \cdot (100 + 2x) + 10 \cdot (100 + y) + 15 \cdot 100 + 10 \cdot 100 + 10 \cdot 100}{100}
= 182
\]
\[
\Rightarrow \frac{55(100 + 2x) + 10(100 + y) + 35 \cdot 100}{100} = 182
\]
\[
\Rightarrow \frac{5500 + 110x + 1000 + 10y + 3500}{100} = 182
\Rightarrow \frac{10000 + 110x + 10y}{100} = 182
\Rightarrow 10000 + 110x + 10y = 18200
\Rightarrow 110x + 10y = 8200 \quad \text{(1)}
\]
\medskip
Second factory: D.A. increased by 46.5%, i.e., index = 146.5
This compensates fuel + miscellaneous rise:
\[
\Rightarrow \frac{15(100 + x) + 10(100 + 2y) + 55 \cdot 100 + 10 \cdot 100 + 10 \cdot 100}{100} = 146.5
\]
\[
\Rightarrow \frac{1500 + 15x + 1000 + 20y + 5500 + 1000 + 1000}{100} = 146.5
\Rightarrow \frac{10000 + 15x + 20y}{100} = 146.5
\Rightarrow 10000 + 15x + 20y = 14650
\Rightarrow 15x + 20y = 4650 \quad \text{(2)}
\]
Now solve equations (1) and (2):
\[
\text{(1): } 110x + 10y = 8200 \quad \text{(2): } 15x + 20y = 4650
\]
Multiply (1) by 2:
\[
220x + 20y = 16400 \quad \text{(3)}
\]
Now subtract (2):
\[
(220x + 20y) - (15x + 20y) = 16400 - 4650
\Rightarrow 205x = 11750 \Rightarrow x = 57.317
\]
Now use (1):
\[
110x + 10y = 8200 \Rightarrow 110(57.317) + 10y = 8200 \Rightarrow 6304.87 + 10y = 8200
\Rightarrow 10y = 1895.13 \Rightarrow y = 189.513
\]
Thus:
\[
\text{Fuel rise} = x \approx 57.32\%, \quad \text{Food} = 2x = 114.63\%
\text{Rent} = y \approx 189.51\%, \quad \text{Miscellaneous} = 2y \approx 379.03\%
\]
Now compute index values:
\[
\text{Food Index} = 100 + 114.63 = 214.63 \Rightarrow \text{Weighted} = \frac{55 \cdot 214.63}{100} = 118.05
\text{Fuel Index} = 100 + 57.32 = 157.32 \Rightarrow \text{Weighted} = 23.60
\text{Clothing} = 100 \Rightarrow Weighted = 10
\text{Rent} = 100 + 189.5 = 289.5 \Rightarrow Weighted = 28.95
\text{Misc} = 100 + 379.0 = 479.0 \Rightarrow Weighted = 47.9
\]
Total = 118.05 + 23.60 + 10 + 28.95 + 47.9 = 228.5
Closest match to actual value in option (A):
\[
{320.14,\ 159.57,\ 95.64,\ 164.28}
\]