Question:

For any y∈R, let cot\(^{-1}\)(y) ∈ (0,π) and tan\(^{-1}\)(y) ∈ (\(-\frac{\pi}{2},\frac{\pi}{2}\)). Then the sum of all the solutions of the equation\(tan^{-1}(\frac{6y}{9-y^2})+cot^{-1}(\frac{9-y^2}{6y})=\frac{2\pi}{3}\, for\,0<|y|<3,\) is equal to

Updated On: Sep 4, 2024
  • \(2\sqrt3-3\)
  • \(3-2\sqrt3\)
  • \(4\sqrt3-6\)
  • \(6-4\sqrt3\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

The solutions combine to yield the sum of solutions, which is calculated as √3 + (3√3 - 6).

The correct option is (C): 4√3-6

Was this answer helpful?
2
2
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given,

\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \cot^{-1}\left(\frac{9-y^2}{6y}\right) = \frac{2\pi}{3} \quad 0 < |y| < 3\)

\(\Rightarrow y \in (-3, 3) - \{0\}\)

breaks down the problem into two cases based on the sign of \(\frac{6y}{9-y^2}\)​:

Case I: When \(\frac{6y}{9-y^2} \gt 0\) (which implies \(y\gt 0\))

Case II: When \(\frac{6y}{9-y^2} \lt 0\) (which implies \(y\lt0\))

Case I:
\(\frac{6y}{9-y^2} > 0 \Rightarrow y > 0\)

\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)

\(\Rightarrow 2 \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)

\(\Rightarrow \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{\pi}{3} \Rightarrow \frac{6y}{9-y^2} = \sqrt{3}\)

\(\Rightarrow 6y = 9\sqrt{3} - \sqrt{3}y^2\)
Solving the Quadratic Equation:
\(\Rightarrow \sqrt{3}y^2 + 6y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y^2 + 9y - 3y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y(y + 3\sqrt{3}) - 3(y + 3\sqrt{3}) = 0\)
\(\Rightarrow (y + 3\sqrt{3})(\sqrt{3}y - 3) = 0\)
\(y \neq -3\sqrt{3}\)
\(y=\sqrt3\ as\ y\in(0,3)\)

Case II:

\(\frac{6y}{9 - y^2} < 0 \Rightarrow y < 0\)

\(\tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi + \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = \frac{2\pi}{3}\)

\(\Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi = \frac{2\pi}{3} \Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{3} \Rightarrow \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{6}\)

\(\Rightarrow \frac{6y}{9 - y^2} = -\frac{1}{\sqrt{3}}\)

\(\Rightarrow 6y\sqrt{3} = -9 + y^2\)
Solving the Quadratic Equation:
\(\Rightarrow y^2 - 6\sqrt{3}y - 9 = 0\)

\(\Rightarrow y = \frac{6\sqrt{3} \pm \sqrt{108 + 36}}{2} = \frac{6\sqrt{3} \pm 12}{2} = 3\sqrt{3} \pm 6\)

\(\text{as } y \in (-3, 0) \quad \therefore y = 3\sqrt{3} - 6\)
Now add both answers
\(y = \sqrt{3} +(3\sqrt{3} - 6)\)
\(y = 4\sqrt{3} - 6\)

So, the correct option is (C): \(4\sqrt{3} - 6\)

Was this answer helpful?
2
0

Questions Asked in JEE Advanced exam

View More Questions

Concepts Used:

Trigonometric Equations

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.

A list of trigonometric equations and their solutions are given below: 

Trigonometrical equationsGeneral Solutions
sin θ = 0θ = nπ
cos θ = 0θ = (nπ + π/2)
cos θ = 0θ = nπ
sin θ = 1θ = (2nπ + π/2) = (4n+1) π/2
cos θ = 1θ = 2nπ
sin θ = sin αθ = nπ + (-1)n α, where α ∈ [-π/2, π/2]
cos θ = cos αθ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan αθ = nπ + α, where α ∈ (-π/2, π/2]
sin 2θ = sin 2αθ = nπ ± α
cos 2θ = cos 2αθ = nπ ± α
tan 2θ = tan 2αθ = nπ ± α