The solutions combine to yield the sum of solutions, which is calculated as √3 + (3√3 - 6).
The correct option is (C): 4√3-6
Given,
\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \cot^{-1}\left(\frac{9-y^2}{6y}\right) = \frac{2\pi}{3} \quad 0 < |y| < 3\)
\(\Rightarrow y \in (-3, 3) - \{0\}\)
breaks down the problem into two cases based on the sign of \(\frac{6y}{9-y^2}\):
Case I: When \(\frac{6y}{9-y^2} \gt 0\) (which implies \(y\gt 0\))
Case II: When \(\frac{6y}{9-y^2} \lt 0\) (which implies \(y\lt0\))
Case I:
\(\frac{6y}{9-y^2} > 0 \Rightarrow y > 0\)
\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)
\(\Rightarrow 2 \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)
\(\Rightarrow \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{\pi}{3} \Rightarrow \frac{6y}{9-y^2} = \sqrt{3}\)
\(\Rightarrow 6y = 9\sqrt{3} - \sqrt{3}y^2\)
Solving the Quadratic Equation:
\(\Rightarrow \sqrt{3}y^2 + 6y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y^2 + 9y - 3y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y(y + 3\sqrt{3}) - 3(y + 3\sqrt{3}) = 0\)
\(\Rightarrow (y + 3\sqrt{3})(\sqrt{3}y - 3) = 0\)
\(y \neq -3\sqrt{3}\)
\(y=\sqrt3\ as\ y\in(0,3)\)
Case II:
\(\frac{6y}{9 - y^2} < 0 \Rightarrow y < 0\)
\(\tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi + \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = \frac{2\pi}{3}\)
\(\Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi = \frac{2\pi}{3} \Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{3} \Rightarrow \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{6}\)
\(\Rightarrow \frac{6y}{9 - y^2} = -\frac{1}{\sqrt{3}}\)
\(\Rightarrow 6y\sqrt{3} = -9 + y^2\)
Solving the Quadratic Equation:
\(\Rightarrow y^2 - 6\sqrt{3}y - 9 = 0\)
\(\Rightarrow y = \frac{6\sqrt{3} \pm \sqrt{108 + 36}}{2} = \frac{6\sqrt{3} \pm 12}{2} = 3\sqrt{3} \pm 6\)
\(\text{as } y \in (-3, 0) \quad \therefore y = 3\sqrt{3} - 6\)
Now add both answers
\(y = \sqrt{3} +(3\sqrt{3} - 6)\)
\(y = 4\sqrt{3} - 6\)
So, the correct option is (C): \(4\sqrt{3} - 6\)
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |