The solutions combine to yield the sum of solutions, which is calculated as √3 + (3√3 - 6).
The correct option is (C): 4√3-6
Given,
\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \cot^{-1}\left(\frac{9-y^2}{6y}\right) = \frac{2\pi}{3} \quad 0 < |y| < 3\)
\(\Rightarrow y \in (-3, 3) - \{0\}\)
breaks down the problem into two cases based on the sign of \(\frac{6y}{9-y^2}\):
Case I: When \(\frac{6y}{9-y^2} \gt 0\) (which implies \(y\gt 0\))
Case II: When \(\frac{6y}{9-y^2} \lt 0\) (which implies \(y\lt0\))
Case I:
\(\frac{6y}{9-y^2} > 0 \Rightarrow y > 0\)
\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)
\(\Rightarrow 2 \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)
\(\Rightarrow \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{\pi}{3} \Rightarrow \frac{6y}{9-y^2} = \sqrt{3}\)
\(\Rightarrow 6y = 9\sqrt{3} - \sqrt{3}y^2\)
Solving the Quadratic Equation:
\(\Rightarrow \sqrt{3}y^2 + 6y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y^2 + 9y - 3y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y(y + 3\sqrt{3}) - 3(y + 3\sqrt{3}) = 0\)
\(\Rightarrow (y + 3\sqrt{3})(\sqrt{3}y - 3) = 0\)
\(y \neq -3\sqrt{3}\)
\(y=\sqrt3\ as\ y\in(0,3)\)
Case II:
\(\frac{6y}{9 - y^2} < 0 \Rightarrow y < 0\)
\(\tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi + \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = \frac{2\pi}{3}\)
\(\Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi = \frac{2\pi}{3} \Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{3} \Rightarrow \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{6}\)
\(\Rightarrow \frac{6y}{9 - y^2} = -\frac{1}{\sqrt{3}}\)
\(\Rightarrow 6y\sqrt{3} = -9 + y^2\)
Solving the Quadratic Equation:
\(\Rightarrow y^2 - 6\sqrt{3}y - 9 = 0\)
\(\Rightarrow y = \frac{6\sqrt{3} \pm \sqrt{108 + 36}}{2} = \frac{6\sqrt{3} \pm 12}{2} = 3\sqrt{3} \pm 6\)
\(\text{as } y \in (-3, 0) \quad \therefore y = 3\sqrt{3} - 6\)
Now add both answers
\(y = \sqrt{3} +(3\sqrt{3} - 6)\)
\(y = 4\sqrt{3} - 6\)
So, the correct option is (C): \(4\sqrt{3} - 6\)
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
| Trigonometrical equations | General Solutions |
| sin θ = 0 | θ = nπ |
| cos θ = 0 | θ = (nπ + π/2) |
| cos θ = 0 | θ = nπ |
| sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
| cos θ = 1 | θ = 2nπ |
| sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
| cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
| tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
| sin 2θ = sin 2α | θ = nπ ± α |
| cos 2θ = cos 2α | θ = nπ ± α |
| tan 2θ = tan 2α | θ = nπ ± α |