The solutions combine to yield the sum of solutions, which is calculated as √3 + (3√3 - 6).
The correct option is (C): 4√3-6
Given,
\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \cot^{-1}\left(\frac{9-y^2}{6y}\right) = \frac{2\pi}{3} \quad 0 < |y| < 3\)
\(\Rightarrow y \in (-3, 3) - \{0\}\)
breaks down the problem into two cases based on the sign of \(\frac{6y}{9-y^2}\):
Case I: When \(\frac{6y}{9-y^2} \gt 0\) (which implies \(y\gt 0\))
Case II: When \(\frac{6y}{9-y^2} \lt 0\) (which implies \(y\lt0\))
Case I:
\(\frac{6y}{9-y^2} > 0 \Rightarrow y > 0\)
\(\tan^{-1}\left(\frac{6y}{9-y^2}\right) + \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)
\(\Rightarrow 2 \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{2\pi}{3}\)
\(\Rightarrow \tan^{-1}\left(\frac{6y}{9-y^2}\right) = \frac{\pi}{3} \Rightarrow \frac{6y}{9-y^2} = \sqrt{3}\)
\(\Rightarrow 6y = 9\sqrt{3} - \sqrt{3}y^2\)
Solving the Quadratic Equation:
\(\Rightarrow \sqrt{3}y^2 + 6y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y^2 + 9y - 3y - 9\sqrt{3} = 0\)
\(\Rightarrow \sqrt{3}y(y + 3\sqrt{3}) - 3(y + 3\sqrt{3}) = 0\)
\(\Rightarrow (y + 3\sqrt{3})(\sqrt{3}y - 3) = 0\)
\(y \neq -3\sqrt{3}\)
\(y=\sqrt3\ as\ y\in(0,3)\)
Case II:
\(\frac{6y}{9 - y^2} < 0 \Rightarrow y < 0\)
\(\tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi + \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = \frac{2\pi}{3}\)
\(\Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) + \pi = \frac{2\pi}{3} \Rightarrow 2 \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{3} \Rightarrow \tan^{-1} \left( \frac{6y}{9 - y^2} \right) = -\frac{\pi}{6}\)
\(\Rightarrow \frac{6y}{9 - y^2} = -\frac{1}{\sqrt{3}}\)
\(\Rightarrow 6y\sqrt{3} = -9 + y^2\)
Solving the Quadratic Equation:
\(\Rightarrow y^2 - 6\sqrt{3}y - 9 = 0\)
\(\Rightarrow y = \frac{6\sqrt{3} \pm \sqrt{108 + 36}}{2} = \frac{6\sqrt{3} \pm 12}{2} = 3\sqrt{3} \pm 6\)
\(\text{as } y \in (-3, 0) \quad \therefore y = 3\sqrt{3} - 6\)
Now add both answers
\(y = \sqrt{3} +(3\sqrt{3} - 6)\)
\(y = 4\sqrt{3} - 6\)
So, the correct option is (C): \(4\sqrt{3} - 6\)
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
Evaluate the integral: \[ I = \int_{\frac{1}{\sqrt[5]{32}}}^{\frac{1}{\sqrt[5]{31}}} \frac{1}{\sqrt[5]{x^{30} + x^{25}}} dx. \]
Evaluate the integral: \[ I = \int_{-3}^{3} |2 - x| dx. \]
Evaluate the integral: \[ I = \int_{-\pi}^{\pi} \frac{x \sin^3 x}{4 - \cos^2 x} dx. \]
If \[ \int \frac{3}{2\cos 3x \sqrt{2} \sin 2x} dx = \frac{3}{2} (\tan x)^{\beta} + \frac{3}{10} (\tan x)^4 + C \] then \( A = \) ?
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |