Step 1: Definition of the dot product.
The dot product between two vectors \( \vec{a} \) and \( \vec{b} \) is defined as:
\[
\vec{a} \cdot \vec{b} = |\vec{a}| \, |\vec{b}| \cos \theta,
\]
where \( \theta \) represents the angle between the vectors \( \vec{a} \) and \( \vec{b} \).
Step 2: Investigate the range of \( \cos \theta \).
Since \( \cos \theta \) lies within the range \( -1 \leq \cos \theta \leq 1 \), it follows that:
\[
-|\vec{a}| \, |\vec{b}| \leq \vec{a} \cdot \vec{b} \leq |\vec{a}| \, |\vec{b}|.
\]
Step 3: Final Answer.
Thus, the correct inequality for the dot product is:
\[
\boxed{\vec{a} \cdot \vec{b} \leq |\vec{a}| \, |\vec{b}|}.
\]