To solve the problem, we need to find the sum a1 + a2 + ... + a50, where an is the largest integer not exceeding √n. This means an = ⌊√n⌋, the floor function of √n. We calculate ⌊√n⌋ for n = 1 to 50:
n | √n | ⌊√n⌋ |
---|---|---|
1 | 1.000 | 1 |
2 | 1.414 | 1 |
3 | 1.732 | 1 |
4 | 2.000 | 2 |
5 | 2.236 | 2 |
6 | 2.449 | 2 |
7 | 2.646 | 2 |
8 | 2.828 | 2 |
9 | 3.000 | 3 |
10 | 3.162 | 3 |
11 | 3.317 | 3 |
12 | 3.464 | 3 |
13 | 3.606 | 3 |
14 | 3.742 | 3 |
15 | 3.873 | 3 |
16 | 4.000 | 4 |
17 | 4.123 | 4 |
18 | 4.243 | 4 |
19 | 4.359 | 4 |
20 | 4.472 | 4 |
21 | 4.583 | 4 |
22 | 4.690 | 4 |
23 | 4.796 | 4 |
24 | 4.899 | 4 |
25 | 5.000 | 5 |
26 | 5.099 | 5 |
27 | 5.196 | 5 |
28 | 5.291 | 5 |
29 | 5.385 | 5 |
30 | 5.477 | 5 |
31 | 5.568 | 5 |
32 | 5.657 | 5 |
33 | 5.745 | 5 |
34 | 5.831 | 5 |
35 | 5.916 | 5 |
36 | 6.000 | 6 |
37 | 6.083 | 6 |
38 | 6.164 | 6 |
39 | 6.245 | 6 |
40 | 6.325 | 6 |
41 | 6.403 | 6 |
42 | 6.481 | 6 |
43 | 6.557 | 6 |
44 | 6.633 | 6 |
45 | 6.708 | 6 |
46 | 6.782 | 6 |
47 | 6.856 | 6 |
48 | 6.928 | 6 |
49 | 7.000 | 7 |
50 | 7.071 | 7 |
Let's sum the values from a1 to a50:
a1 = 1, a2 = 1, a3 = 1 (3 times, so sum = 3)
a4 = 2, a5 = 2, a6 = 2, a7 = 2, a8 = 2 (5 times, sum = 10)
a9 = 3, ... a15 = 3 (7 times, sum = 21)
a16 = 4, ... a24 = 4 (9 times, sum = 36)
a25 = 5, ... a35 = 5 (11 times, sum = 55)
a36 = 6, ... a48 = 6 (13 times, sum = 78)
a49 = 7, a50 = 7 (2 times, sum = 14)
Total = 3 + 10 + 21 + 36 + 55 + 78 + 14 = 217
The sum, 217, falls within the range 217—217, confirming its correctness.
Thus, the value of a1 + a2 + ... + a50 is 217.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: