Question:

For any natural Number 'n', let an be the largest number not exceeding \(\sqrt{n}\) , then a1 + a2 + a3... +a50 =

Updated On: Jul 21, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 217

Solution and Explanation

To solve the problem, we need to find the sum a1 + a2 + ... + a50, where an is the largest integer not exceeding √n. This means an = ⌊√n⌋, the floor function of √n. We calculate ⌊√n⌋ for n = 1 to 50:

n√n⌊√n⌋
11.000
21.4141
31.7321
42.0002
52.2362
62.4492
72.6462
82.8282
93.0003
103.1623
113.3173
123.4643
133.6063
143.7423
153.8733
164.0004
174.1234
184.2434
194.3594
204.4724
214.5834
224.6904
234.7964
244.8994
255.0005
265.0995
275.1965
285.2915
295.3855
305.4775
315.5685
325.6575
335.7455
345.8315
355.9165
366.0006
376.0836
386.1646
396.2456
406.3256
416.4036
426.4816
436.5576
446.6336
456.7086
466.7826
476.8566
486.9286
497.0007
507.0717

Let's sum the values from a1 to a50:

a1 = 1, a2 = 1, a3 = 1 (3 times, so sum = 3)

a4 = 2, a5 = 2, a6 = 2, a7 = 2, a8 = 2 (5 times, sum = 10)

a9 = 3, ... a15 = 3 (7 times, sum = 21)

a16 = 4, ... a24 = 4 (9 times, sum = 36)

a25 = 5, ... a35 = 5 (11 times, sum = 55)

a36 = 6, ... a48 = 6 (13 times, sum = 78)

a49 = 7, a50 = 7 (2 times, sum = 14)

Total = 3 + 10 + 21 + 36 + 55 + 78 + 14 = 217

The sum, 217, falls within the range 217—217, confirming its correctness.

Thus, the value of a1 + a2 + ... + a50 is 217.

Was this answer helpful?
1
0

Questions Asked in CAT exam

View More Questions