For an integer \( n \), let \( f_n(x) = xe^{-nx }\), where \( x \in [0, 1] \). Let \( S := \{f_n : n \geq 1\} \). Consider the metric space \( (C([0, 1]), d) \), where \[ d(f, g) = \sup_{x \in [0, 1]} |f(x) - g(x)|, \quad f, g \in C([0, 1]). \] Which of the following statement(s) is/are true?}
Step 1: Checking equi-continuity of \( S \). The functions \( f_n(x) = xe^{-nx} \) are continuous for all \( n \geq 1 \), and for each \( \epsilon>0 \), the variation in \( f_n(x) \) can be made arbitrarily small by choosing \( x \) close enough to a fixed point. Hence, \( S \) is equi-continuous.
Step 2: Checking whether \( S \) is closed. The limit of a sequence of functions in \( S \) need not belong to \( S \) (e.g., \( f_n \to 0 \) pointwise as \( n \to \infty \), but \( 0 \notin S \)). Thus, \( S \) is not closed.
Step 3: Checking boundedness of \( S \). For any \( f_n(x) \in S \), we have \[ |f_n(x)| = |xe^{-nx}| \leq \max_{x \in [0, 1]} |xe^{-nx}| \leq \frac{1}{e}. \] Thus, \( S \) is bounded in \( (C([0, 1]), d) \).
Step 4: Checking compactness of \( S \). The family \( S \) is not compact because it is not closed (as shown above), violating a necessary condition for compactness in a metric space.
Step 5: Conclusion. The correct answers are \( {(1), (3)} \).
Consider the following Linear Programming Problem $ P $: Minimize $ x_1 + 2x_2 $, subject to
$ 2x_1 + x_2 \leq 2 $,
$ x_1 + x_2 = 1 $,
$ x_1, x_2 \geq 0 $.
The optimal value of the problem $ P $ is equal to:
Let $D = \{(x, y) \in \mathbb{R}^2 : x > 0 \text{ and } y > 0\}$. If the following second-order linear partial differential equation
$y^2 \frac{\partial^2 u}{\partial x^2} - x^2 \frac{\partial^2 u}{\partial y^2} + y \frac{\partial u}{\partial y} = 0$ on $D$
is transformed to
$\left( \frac{\partial^2 u}{\partial \eta^2} - \frac{\partial^2 u}{\partial \xi^2} \right) + \left( \frac{\partial u}{\partial \eta} + \frac{\partial u}{\partial \xi} \right) \frac{1}{2\eta} + \left( \frac{\partial u}{\partial \eta} - \frac{\partial u}{\partial \xi} \right) \frac{1}{2\xi} = 0$ on $D$,
for some $a, b \in \mathbb{R}$, via the coordinate transform $\eta = \frac{x^2}{2}$ and $\xi = \frac{y^2}{2}$, then which one of the following is correct?
Consider the following regions: \[ S_1 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 + x_2 \leq 4, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] \[ S_2 = \{(x_1, x_2) \in \mathbb{R}^2 : 2x_1 - x_2 \leq 5, \quad x_1 + 2x_2 \leq 5, \quad x_1, x_2 \geq 0\} \] Then, which of the following is/are TRUE?
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:

where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Consider the relationships among P, Q, R, S, and T:
• P is the brother of Q.
• S is the daughter of Q.
• T is the sister of S.
• R is the mother of Q.
The following statements are made based on the relationships given above.
(1) R is the grandmother of S.
(2) P is the uncle of S and T.
(3) R has only one son.
(4) Q has only one daughter.
Which one of the following options is correct?
For \( X = (x_1, x_2, x_3)^T \in \mathbb{R}^3 \), consider the quadratic form:
\[ Q(X) = 2x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3. \] Let \( M \) be the symmetric matrix associated with the quadratic form \( Q(X) \) with respect to the standard basis of \( \mathbb{R}^3 \).
Let \( Y = (y_1, y_2, y_3)^T \in \mathbb{R}^3 \) be a non-zero vector, and let
\[ a_n = \frac{Y^T(M + I_3)^{n+1}Y}{Y^T(M + I_3)^n Y}, \quad n = 1, 2, 3, \dots \] Then, the value of \( \lim_{n \to \infty} a_n \) is equal to (in integer).