For an ideal gas, the specific heat at constant pressure is \(c_p = 1147 \ \mathrm{J\,kg^{-1}\,K^{-1}},\) and the ratio of specific heats is \(\gamma = 1.33.\)
What is the value of the gas constant \(R\) in \(\mathrm{J\,kg^{-1}\,K^{-1}}\)?
Step 1: Relations among specific heats.
\[ \gamma = \frac{c_p}{c_v}, \qquad R = c_p - c_v. \]
Step 2: Find \(c_v\).
\[ c_v = \frac{c_p}{\gamma} = \frac{1147}{1.33}. \]
Compute: \[c_v \approx 862.4 \ \mathrm{J\,kg^{-1}\,K^{-1}} \]
Step 3: Find \(R\).
\[R = c_p - c_v = 1147 - 862.4 = 284.6 \ \mathrm{J\,kg^{-1}\,K^{-1}} \]
\[\boxed{284.6 \ \mathrm{J\,kg^{-1}\,K^{-1}}} \]